Model Order Reduction of Differential Algebraic Equations Arising from the Simulation of Gas Transport Networks

  • Sara Grundel
  • Lennart Jansen
  • Nils Hornung
  • Tanja Clees
  • Caren Tischendorf
  • Peter Benner
Conference paper
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

We explore the Tractability Index of Differential Algebraic Equations (DAEs) that emerge in the simulation of gas transport networks. Depending on the complexity of the network, systems of index 1 or index 2 can arise. It is then shown that these systems can be rewritten as Ordinary Differential Equations (ODEs). We furthermore apply Model Order Reduction (MOR) techniques such as Proper Orthogonal Decomposition (POD) to a network of moderate size and complexity and show that one can reduce the system size significantly.

Keywords

Proper orthogonal decomposition Nonlinear systems Gas network simulation Model order reduction Differential algebraic equations 

References

  1. 1.
    Banagaaya, N., Schilders, W.: Simulation of electromagnetic descriptor models using projectors. J. Math. Ind. 3(1) (2013). doi: doi:10.1186/2190-5983-3-1. http://www.mathematicsinindustry.com/content/3/1/1
  2. 2.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004). doi: 10.1016/j.crma.2004.08.006 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). doi: 10.1137/090766498 CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H., Phu, H., Kostina, E., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin/New York (2005). http://www.springerlink.com/index/U8V7048500471185.pdf
  5. 5.
    Godsil, C., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207, chap. 8. Springer, New York (2001)Google Scholar
  6. 6.
    Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T.: Computing surrogates for gas network simulation using model order reduction. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization, pp. 189–212. Springer, New York (2013). doi: 10.1007/978-1-4614-7551-4_9 CrossRefGoogle Scholar
  7. 7.
    Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010). doi: 10.1002/mma.1197 MATHMathSciNetGoogle Scholar
  8. 8.
    Hinze, M., Kunkel, M.: Discrete empirical interpolation in POD model order reduction of drift-diffusion equations in electrical networks. In: Michielsen, B., Poirier, J.R. (eds.) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry, pp. 423–431. Springer, Berlin/Heidelberg (2012). doi: 10.1007/978-3-642-22453-9_45 CrossRefGoogle Scholar
  9. 9.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). doi: 10.1137/S0036142900382612 CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lamour, R., März, R., Tischendorf, C.: Differential Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer, Berlin/New York (2013)Google Scholar
  11. 11.
    LIWACOM Informationstechnik GmbH, Simone Research Group, Simone Software: Gleichungen und Methoden, Essen (2004)Google Scholar
  12. 12.
    Mehrmann, V.: Index concepts for differential-algebraic equations, TU, Berlin (2013, preprint)Google Scholar
  13. 13.
    Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I–III. Q. Appl. Math. 45(3), 561–590 (1987)MATHMathSciNetGoogle Scholar
  14. 14.
    Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). doi: 10.1016/j.cam.2006.04.018 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Tischendorf, C.: Topological index calculation of DAEs in circuit simulation. Surv. Math. Ind. 8(3–4), 187–199 (1999)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sara Grundel
    • 1
  • Lennart Jansen
    • 2
  • Nils Hornung
    • 3
  • Tanja Clees
    • 3
  • Caren Tischendorf
    • 2
  • Peter Benner
    • 1
  1. 1.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.Institute of MathematicsHumboldt Universität zu BerlinBerlinGermany
  3. 3.Fraunhofer SCAISankt AugustinGermany

Personalised recommendations