A Unified (P)DAE Modeling Approach for Flow Networks

Conference paper
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

We present a unified modeling approach for different types of flow networks, for instance electric circuits, water and gas supplying networks. In all cases the flow network is described by the pressures at the nodes of the network and the flows through the branches of the network. It is shown that the mass balance equations at each node are independent of the type of flow medium and can be described by the use of incidence matrices reflecting the network topology. Additionally, various types of net element models are presented. Finally, all network describing equations are summarized for some prototype networks which differ by the various net element models. They yield in pure linear/nonlinear equation systems, differential-algebraic systems or partial differential equation systems. All of them may have serious rank changes in the model functions if switching elements belong to the network. The model descriptions presented here keep all the network structure information and can be exploited for the analysis, numerical simulation and optimization of such networks.

Keywords

Modeling Flow network Partial differential algebraic equation Circuit Water network Gas network 

References

  1. 1.
    Ahmed, M., Cho, K., Cho, T.W.: Memristance and memcapacitance modeling of thin film devices showing memristive behavior. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Turin, pp. 1–5 (2012). doi: 10.1109/CNNA.2012.6331436
  2. 2.
    Bales, P., Kolb, O., Lang, J.: Hierarchical modelling and model adaptivity for gas flow on networks. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G.D., Dongarra, J., Sloot, P.M. (eds.) Computational Science – ICCS 2009. 9th International Conference Baton Rouge, LA, USA, May 25–27, 2009. Lecture Notes in Computer Science, vol. 5544, pp. 337–346. Springer, Berlin/Heidelberg (2009). doi: 10.1007/978-3-642-01970-8_33 Google Scholar
  3. 3.
    Baumanns, S.: Coupled electromagnetic field/circuit simulation: modeling and numerical analysis. Ph.D. thesis, University of Cologne (2012)Google Scholar
  4. 4.
    Baumanns, S., Jansen, L., Selva Soto, M., Tischendorf, C.: Analysis of semi-discretized differential algebraic equation from coupled circuit device simulation. Computational and Applied Mathematics, Springer Basel, pp. 1–23, (2014). doi:10.1007/s40314-014-0157-4Google Scholar
  5. 5.
    Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9(2), 601–623 (2011). doi: 10.1137/100813580 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    BSIM Group: Providing the world with transistor models for IC design. (2014). http://www-device.eecs.berkeley.edu/bsim/
  7. 7.
    Burgschweiger, J., Gnädig, B., Steinbach, M.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi: 10.1007/s11081-008-9040-8 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A: Mater. Sci. Process. 102(4), 765–783 (2011)CrossRefGoogle Scholar
  9. 9.
    Chua, L., Desoer, C., Kuh, E.: Linear and Nonlinear Circuits. McGraw-Hill Book, Singapore (1987)MATHGoogle Scholar
  10. 10.
    Clemens, M., Weiland, T.: Discrete electromagnetism with the finite integration technique. Prog. Electromagn. Res. (PIER) 32, 65–87 (2001)Google Scholar
  11. 11.
    Danielsen, M., Ottesen, J.T.: 6. A cardiovascular model, chap. 6. In: Ottesen, J.T., Olufsen, M.S., Larsen, J. (eds.) Applied Mathematical Models in Human Physiology, pp. 137–155. Society for Industrial and Applied Mathematics, Philadelphia (2004). doi: 10.1137/1.9780898718287.ch6 CrossRefGoogle Scholar
  12. 12.
    Desoer, C., Kuh, E.: Basic Circuit Theory. International student edition. McGraw-Hill, Auckland/Singapore (1984)Google Scholar
  13. 13.
    Deuerlein, J.: Decomposition model of a general water supply network graph. J. Hydraul. Eng. 134(6), 822–832 (2008). doi: 10.1061/(ASCE)0733-9429(2008)134:6(822) CrossRefGoogle Scholar
  14. 14.
    Di Ventra, M., Pershin, Y., Chua, L.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009). doi: 10.1109/JPROC.2009.2021077 CrossRefGoogle Scholar
  15. 15.
    EPANET: Software that models the hydraulic and water quality behavior of water distribution piping systems. (2014). http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
  16. 16.
    Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28(2), 131–162 (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gugat, M., Leugering, G., Schittkowski, K., Schmidt, E.: Modelling, stabilization, and control of flow in networks of open channels. In: Grötschel, M., Krumke, S., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 251–270. Springer, Berlin/Heidelberg (2001). doi: 10.1007/978-3-662-04331-8_16
  19. 19.
    Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010). doi: 10.1002/mma.1197. http://dx.doi.org/10.1002/mma.1197
  20. 20.
    Jansen, L., Matthes, M., Tischendorf, C.: Global unique solvability for memristive circuit DAEs of index 1. Int. J. Circuit Theory Appl., (2013). doi:10.1002/cta.1927Google Scholar
  21. 21.
    Jansen, L., Pade, J.: Global unique solvability for a quasi-stationary water network model. Preprint 2013–11, Dept. of Math., Humboldt-Universität zu Berlin, (2013)Google Scholar
  22. 22.
    Liu, W.: MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4. Wiley-IEEE, New York (2001)Google Scholar
  23. 23.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)CrossRefMATHGoogle Scholar
  24. 24.
    Quarteroni, A., Ragni, S., Veneziani, A.: Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4(2), 111–124 (2001)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Riaza, R.: Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Anal.: Real World Appl. 12(6), 3674–3686 (2011)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Riaza, R.: Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72(3), 877–896 (2012). doi: 10.1137/100816559 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Riaza, R.: First order mem-circuits: modeling, nonlinear oscillations and bifurcations. IEEE Trans. Circuits Systems I: Regul. Pap. 60(6), 1570–1583 (2013). doi: 10.1109/TCSI.2012.2221174 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Riaza, R., Tischendorf, C.: Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39(6), 607–627 (2011)CrossRefMATHGoogle Scholar
  29. 29.
    Selva Soto, M., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53(2–), 471–488 (2005)Google Scholar
  30. 30.
    SIMONE: SIMONE Research Group S.R.O. (2014). www.simone.eu
  31. 31.
    Simpson, A.R.: Comparing the Q-equations and Todini-Pilati formulation for solving the water distribution system equations, chap. 5. In: Lansey, K.E., Choi, C.Y., Ostfeld, A., Pepper, I.L. (eds.) Proceedings of the 12th Annual Conference on Water Distribution Systems Analysis 2010, Tucson, pp. 37–54 (2010). doi: 10.1061/41203(425)6
  32. 32.
    Tischendorf, C.: Modeling circuit systems coupled with distributed semiconductor equations. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds.) Mathematical Modeling, Simulation and Optimization of Integrated Electrical Circuits. No. 146 in International Series of Numerical Mathematics, pp. 229–247. Birkhäuser, Basel (2003)CrossRefGoogle Scholar
  33. 33.
    Tischendorf, C.: Coupled systems of differential-algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis (2004). Habilitation thesis at Humboldt University of BerlinGoogle Scholar
  34. 34.
    Todini, E., Pilati, S.: A gradient algorithm for the analysis of pipe networks. In: Coulbeck, B., Orr, C.-H. (eds.) Computer Applications in Water Supply: Vol. 1—Systems Analysis and Simulation, pp. 1–20. Research Studies Press, Taunton, (1988)Google Scholar
  35. 35.
    Weiland, T.: A discretization model for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Übertrag. 31(3), 116–120 (1977)Google Scholar
  36. 36.
    Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model.: Electron. Netw. Devices Fields 9(4), 295–319 (1996)Google Scholar
  37. 37.
    Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Humboldt-Univerität zu BerlinBerlinGermany

Personalised recommendations