Error Analysis and Error Estimates for Co-simulation in FMI for Model Exchange and Co-Simulation v2.0

Conference paper
Part of the Differential-Algebraic Equations Forum book series (DAEF)


Complex multi-disciplinary models in system dynamics are typically composed of subsystems. This modular structure of the model reflects the modular structure of complex engineering systems. In industrial applications, the individual subsystems are often modelled separately in different mono-disciplinary simulation tools. The Functional Mock-Up Interface (FMI) provides an interface standard for coupling physical models from different domains and addresses problems like export and import of model components in industrial simulation tools (FMI for Model Exchange) and the standardization of co-simulation interfaces in nonlinear system dynamics (FMI for Co-Simulation), see The renewed interest in algorithmic and numerical aspects of co-simulation inspired some new investigations on error estimation and stabilization techniques in FMI for Model Exchange and Co-Simulation v2.0 compatible co-simulation environments. In the present paper, we focus on reliable error estimation for communication step size control in this framework.


Co-simulation Modular time integration Algebraic loops Convergence analysis 



The authors are grateful to the Polish Academy of Sciences for granting the permission to reproduce this copyrighted material from Archive of Mechanical Engineering LX(2013)75–94 in this proceedings volume. They furthermore gratefully acknowledge the fruitful cooperation in the European ITEA2 project “MODELISAR - From system modelling to S/W running on the vehicle” (2008–2011) and valuable discussions with J. Bastian, T. Blochwitz (Dresden), H. Elmqvist, H. Olsson (Lund), M. Otter (Oberpfaffenhofen) and other partners of the MODELISAR consortium. The work was supported by the German Minister of Education and Research, BMBF projects 01IS08002N and 03MS633A. The research on the convergence analysis for modular time integration methods applied to coupled systems in block representation was inspired by fruitful discussions with M. Busch (Kassel).


  1. 1.
    Arnold, M.: Multi-rate time integration for large scale multibody system models. In: Eberhard, P. (ed.) IUTAM Symposium on Multiscale Problems in Multibody System Contacts, Stuttgart, pp. 1–10. Springer (2007)Google Scholar
  2. 2.
    Arnold, M.: Numerical methods for simulation in applied dynamics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Dynamics. Volume 507 of CISM Courses and Lectures, pp 191–246. Springer, Wien/New York (2009)CrossRefGoogle Scholar
  3. 3.
    Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5, 031003 (2010)CrossRefGoogle Scholar
  4. 4.
    Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numer. Math. 41, 1–25 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Busch, M.: Zur effizienten Kopplung von Simulationsprogrammen. PhD thesis, Universität Kassel, Fachbereich Maschinenbau (2012)Google Scholar
  6. 6.
    Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-simulation techniques: analytical investigations based on a 2-DOF test model. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, 25–27 May 2010Google Scholar
  7. 7.
    Clauß, C., Arnold, M., Schierz, T., Bastian, J.: Master zur Simulatorkopplung via FMI. In: Liu-Henke, X. (ed.) Tagungsband der ASIM/GI-Fachgruppen STS und GMMS, Wolfenbüttel, 23–24 Feb 2012. Ostfalia Hochschule für Angewandte Wissenschaften, Wolfenbüttel (2012)Google Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT, Cambridge (2001)MATHGoogle Scholar
  9. 9.
    Deuflhard, P., Hohmann, A.: Numerical Analysis in Modern Scientific Computing: An Introduction. Number 43 in Texts in Applied Mathematics, 2nd edn. Springer, New York (2003)Google Scholar
  10. 10.
    FMI: The Functional Mockup Interface.
  11. 11.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin/Heidelberg/New York (1996)Google Scholar
  12. 12.
    Knorr, S.: Multirate-Verfahren in der Co-Simulation gekoppelter dynamischer Systeme mit Anwendung in der Fahrzeugdynamik. Master thesis, University Ulm, Faculty of Mathematics and Economics (2002)Google Scholar
  13. 13.
    Kübler, R.: Modulare Modellierung und Simulation mechatronischer Systeme. Fortschritt-Berichte VDI Reihe 20, Nr. 327. VDI–Verlag GmbH, Düsseldorf (2000)Google Scholar
  14. 14.
    Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Modelica Association Project FMI: Functional Mockup Interface for Model Exchange and Co-Simulation v2.0 beta 4. (2012)
  16. 16.
    Popp, P., Schiehlen, W.O.: Ground Vehicle Dynamics. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Schierz, T., Arnold, M.: Stabilized overlapping modular time integration of coupled differential-algebraic equations. Appl. Numer. Math. 62, 1491–1502 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Schierz, T., Arnold, M., Clauß, C.: Co-simulation with communication step size control in an FMI compatible master algorithm. In: Otter, M., Zimmer, D. (eds.) Proceedings of the 9th International Modelica Conference, Munich, 3–5 Sept 2012Google Scholar
  19. 19.
    Walter, W.: Ordinary Differential Equations. Number 182 in Graduate Texts in Mathematics. Springer, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of MathematicsMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Fraunhofer Institute for Integrated Circuits IISDesign Automation Division EASDresdenGermany
  3. 3.SIMPACK AGGilchingGermany

Personalised recommendations