Advertisement

Design of Causal Observers for Nonlinear Descriptor Systems

  • Daniel Labisch
  • Ulrich Konigorski
Conference paper
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

This contribution not only provides a new necessary and sufficient condition for causal observability of nonlinear descriptor systems but also a method to design the causal observer. The approach is based on the transformation of the descriptor system into a state-space form, the so called coupled state-space system. This description exists for all regular descriptor systems no matter if they are proper or not. If the new condition is satisfied, the coupled state-space system can be modified and can be used to design a state-space observer. It is shown, that this observer is also a causal observer for the original descriptor system. Two examples illustrate the capability of the new approach.

Keywords

Observer design Nonlinear descriptor system 

References

  1. 1.
    Ailon, A.: On the reduced-order causal observer for generalized control systems. Int. J. Control 57(6), 1311–1323 (1993)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aliyu, M.D.S., Boukas, E.K.: Kalman filtering for affine nonlinear descriptor systems. Circuits Syst. Signal Process. 30, 125–142 (2011)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994). http://dx.doi.org/10.1007/s002110050020
  4. 4.
    Åslund, J., Frisk, E.: An observer for non-linear differential-algebraic systems. Automatica 42(6), 959–965 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972). http://www.sciencedirect.com/science/article/pii/0045782572900187
  6. 6.
    Boutayeb, M., Darouach, M.: Observers design for nonlinear descriptor systems. In: Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, vol. 3, pp. 2369–2374 (1995)Google Scholar
  7. 7.
    Burgermeister, B., Arnold, M., Esterl, B.: DAE time integration for real-time applications in multi-body dynamics. ZAMM – Z. Angew. Math. Mech. 86(10), 759–771 (2006). http://dx.doi.org/10.1002/zamm.200610284
  8. 8.
    Campbell, S.L., Delebecque, F., Nikoukhah, R.: Observer design for linear time varying descriptor systems. In: Proceedings Control of Industrial Systems, Belfort, vol. 1, pp. 507–512 (1997)Google Scholar
  9. 9.
    Dai, L.: Singular Control Systems. Springer, Berlin/Heidelberg (1989)CrossRefMATHGoogle Scholar
  10. 10.
    Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Autom. Control 53(11), 2627–2633 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Darouach, M., Boutat-Baddas, L.: Observers for Lipschitz nonlinear descriptor systems: application to unknown inputs systems. In: Proceedings of the 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, pp. 1369–1374 (2008)Google Scholar
  12. 12.
    Darouach, M., Boutayeb, M.: Design of observers for descriptor systems. IEEE Trans. Autom. Control 40(7), 1323–1327 (1995)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fahmy, M.M., O’Reilly, J.: Observers for descriptor systems. Int. J. Control 49(6), 2013–2028 (1989)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Frisk, E., Åslund, J.: An observer for semi-explicit differential-algebraic systems. In: Proceedings of the 16th IFAC World Congress (IFAC), Prague, pp. 671–676. Elsevier (2005)Google Scholar
  15. 15.
    Gao, Z., Ho, D.W.: State/noise estimator for descriptor systems with application to sensor fault diagnosis. IEEE Trans. Signal Process. 54(4), 1316–1326 (2006)CrossRefGoogle Scholar
  16. 16.
    Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Numer. Anal. 9, 39–47 (1988)MATHMathSciNetGoogle Scholar
  17. 17.
    Gerdin, M.: Local identifiability and observability of nonlinear differential-algebraic equations. In: Proceedings of the 14th IFAC Symposium on System Identification, Newcastle, vol. 14, pp. 802–807 (2006)Google Scholar
  18. 18.
    Hou, M., Müller, P.C.: Design of a class of Luenberger observers for descriptor systems. IEEE Trans. Autom. Control 40, 133–136 (1995)CrossRefMATHGoogle Scholar
  19. 19.
    Hou, M., Müller, P.C.: Causal observability of descriptor systems. IEEE Trans. Autom. Control 44, 158–163 (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Hou, M., Müller, P.C.: Observer design for descriptor systems. IEEE Trans. Autom. Control 44, 164–168 (1999)CrossRefMATHGoogle Scholar
  21. 21.
    Hou, M., Müller, P.C.: Observer design for a class of descriptor systems. In: Proceedings of the European Control Conference, Cambridge, 1–4 Sept 2003. CD–RomGoogle Scholar
  22. 22.
    Kaprielian, S., Turi, J.: An observer for a nonlinear descriptor system. In: Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, vol. 1, pp. 975–976 (1992)Google Scholar
  23. 23.
    Koenig, D.: Observer design for unknown input nonlinear descriptor systems via convex optimization. IEEE Trans. Autom. Control 51(6), 1047–1052 (2006)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Labisch, D.: Verkopplungsbasierte Methoden zum Regler- und Beobachterentwurf für nichtlineare Deskriptorsysteme. Fortschritt-Berichte VDI, Reihe 8, Nr. 1227, VDI-Verlag, Düsseldorf (2013)Google Scholar
  25. 25.
    Labisch, D., Konigorski, U.: Entwurf kausaler Beobachter für lineare Deskriptorsysteme. In: Adamy, J., Sawodny, O. (eds.) GMA Fachausschuss 1.40 “Theoretische Verfahren der Regelungstechnik”, Workshop, 16–19 Sept 2011, Salzburg, pp. 289–301 (2012)Google Scholar
  26. 26.
    Labisch, D., Manderla, M., Konigorski, U.: Control, simulation and stability analysis of nonlinear regular proper DAEs. In: Proceedings of the 20th Mediterranean Conference on Control and Automation, Barcelona, pp. 392–397 (2012)Google Scholar
  27. 27.
    Lu, G., Ho, D.W.: Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach. IEEE Trans. Circuits Syst. II: Express Briefs 53(7), 563–567 (2006)CrossRefGoogle Scholar
  28. 28.
    Manderla, M.: Eine Methodik zum Regler- und Beobachterentwurf für Mehrgrößensysteme in Deskriptorform. VDI-Verlag, Düsseldorf (2011)Google Scholar
  29. 29.
    Manderla, M., Labisch, D., Konigorski, U.: Dualität von Regler- und Beobachterentwurf für reguläre Deskriptorsysteme. In: Adamy, J., Sawodny, O. (eds.) GMA Fachausschuss 1.40 “Theoretische Verfahren der Regelungstechnik”, Workshop, 18–21 Sept 2011, Salzburg, pp. 320–331 (2011)Google Scholar
  30. 30.
    Mehrmann, V., Stykel, T.: Descriptor systems: a general mathematical framework for modelling, simulation and control. At – Automatisierungstechnik 54, 405–415 (2006)Google Scholar
  31. 31.
    Müller, P.C., Hou, M.: On the observer design for descriptor systems. IEEE Trans. Autom. Control 38, 1666–1671 (1993)CrossRefMATHGoogle Scholar
  32. 32.
    Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, New York (1990)CrossRefMATHGoogle Scholar
  33. 33.
    Ploix, S., Maquin, D., Ragot, J.: Asymptotic observer for a non linear descriptor system. In: IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS’97), pp. 654–658. Hull, Royaume-Uni (1997)Google Scholar
  34. 34.
    Respondek, W.: Right and left invertibility of nonlinear control systems. In: Sussmann, H.J. (ed.) Nonlinear Control and Optimal Control, pp. 133–176. Marcel Dekker, New York (1990)Google Scholar
  35. 35.
    Shields, D.N.: Observer design for discrete nonlinear descriptor systems. In: UKACC International Conference on Control, Exeter, vol. 2, pp. 831–836 (1996)Google Scholar
  36. 36.
    Shields, D.N.: Observer design and detection for nonlinear descriptor systems. Int. J. Control 67(2), 153–168 (1997)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Terrell, W.J.: Local observability of nonlinear differential-algebraic equations (DAEs) from the linearization along a trajectory. IEEE Trans. Autom. Control 46(12), 1947–1950 (2001)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Yang, C., Zhang, Q., Chai, T.: Observer design for a class of nonlinear descriptor systems. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, pp. 8232–8237 (2009)Google Scholar
  39. 39.
    Yang, C., Zhang, Q., Zhou, L.: Stability Analysis and Design for Nonlinear Singular Systems, vol. 435. Springer, Berlin/Heidelberg (2013)MATHGoogle Scholar
  40. 40.
    Zimmer, G., Meier, J.: On observing nonlinear descriptor systems. Syst. Control Lett. 32(1), 43–48 (1997)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Siemens AG, Industry SectorIndustry Automation DivisionKarlsruheGermany
  2. 2.Department of Control Engineering and MechatronicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations