Lyapunov Matrix Equations for the Stability Analysis of Linear Time-Invariant Descriptor Systems

  • Peter C. Müller
Conference paper
Part of the Differential-Algebraic Equations Forum book series (DAEF)


For the stability analysis of linear time-invariant descriptor systems two different generalizations of the classical Lyapunov matrix equation are considered. The first generalization includes the singular matrix related to the time-derivatives of the descriptor variables in an obviously symmetric form; the second one shows at a first sight no symmetry which additionally has to be asked for explicitly. This second approach is well-known for ‘admissible’ descriptor systems which includes a restriction to systems of index k = 1. In this contribution the second approach will be generalized to systems with arbitrary index k ≥ 1. Both approaches will be compared with each other showing different solvability conditions and different solutions in general. But for the problem of analyzing asymptotic stability the solution behaviors of the two generalized Lyapunov matrix equations coincide. In spite of the different procedures both approaches lead to the same Lyapunov function for the analysis of asymptotic stability of linear time-invariant descriptor systems. The two approaches will be illustrated by the stability analysis of mechanical descriptor systems, i.e. by mechanical systems with holonomic constrains. Although the application of the approaches usually is very costly, they represent suitable tools for the stability analysis of linear time-invariant descriptor systems.


Linear descriptor systems Asymptotic stability Lyapunov functions Generalized Lyapunov matrix equations Mechanical descriptor systems 


  1. 1.
    Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436, 4052–069 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin (1989)Google Scholar
  3. 3.
    Duan, G.-R.: Analysis and Design of Descriptor Linear Systems. Advances in Mechanics and Mathematics, vol. 23, Springer, New York (2010)Google Scholar
  4. 4.
    Hou, M.: Descriptor Systems: Observers and Fault Diagnosis. Fortschr.-Ber. VDI, Reihe 8, Nr. 482. VDI, Düsseldorf (1995)Google Scholar
  5. 5.
    Ishihara, J.Y., Terra, M.H.: On the Lyapunov theorem for singular systems. IEEE Trans. Autom. Control 47, 1926–1930 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorenson, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 83–115. Springer, Berlin (2005)CrossRefGoogle Scholar
  7. 7.
    Müller, P.C.: Stabilität und Matrizen. Springer, Berlin (1977)MATHGoogle Scholar
  8. 8.
    Müller, P.C.: Stability of linear mechanical systems with holonomic constraints. Appl. Mech. Rev. 46(11, part 2), 160–164 (1993)Google Scholar
  9. 9.
    Müller, P.C.: Characteristics of LTI descriptor systems. PAMM-Proc. Appl. Math. Mech. 11, 831–832 (2011)CrossRefGoogle Scholar
  10. 10.
    Müller, P.C.: Generalized Lyapunov matrix equation revisited. In: Proceedings of the XV International Symppsium on Dynamic Problems of Mechanics (DINAME 2013), Buzios RJ, Brazil (2013)Google Scholar
  11. 11.
    Owens, D.H., Debeljkovic, D.L.: Consistency and Liapunov stability of linear descriptor systems: a geometric analysis. IMA J. Math. Control Inf. 2, 139–151 (1985)CrossRefMATHGoogle Scholar
  12. 12.
    Rehm, A.: Control of Linear Descriptor Systems: A Matrix Inequality Approach. Fortschr.-Ber. VDI, Reihe 8, Nr. 1019. VDI, Düsseldorf (2004)Google Scholar
  13. 13.
    Schüpphaus, R.: Regelungstechnische Analyse und Synthese von Mehrkörpersystemen in Deskriptorform. Fortschr.-Ber. VDI, Reihe 8, Nr. 478. VDI, Düsseldorf (1995)Google Scholar
  14. 14.
    Stykel, T.: Analysis and numerical solution of generalized Lyapunov equations. Ph.D. thesis, Institute for Mathematics, TU Berlin (2002)Google Scholar
  15. 15.
    Tabaka, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor systems. Syst. Control Lett. 24, 49–51 (1995)CrossRefGoogle Scholar
  16. 16.
    Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl. 27, 103–140 (1979)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: Computational aspects. Linear Algebra Appl. 50, 545–579 (1983)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Safety Control EngineeringBergische Universität WuppertalWuppertalGermany

Personalised recommendations