Temporal-Based Ranking in Heterogeneous Networks

  • Chen Yu
  • Ruidan Li
  • Dezhong Yao
  • Feng Lu
  • Hai Jin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8707)


Ranking is a fundamental task for network analysis, benefiting to filter and find valuable information. Time information impacts results in content that is sensitive to trends and events ranking. The current ranking either assumes that user’s interest and concerns remain static and never change over time or focuses on detecting recency information. Meanwhile most prevalent networks like social network are heterogeneous, that composed of multiple types of node and complex reliance structures. In this paper, we propose a general Temporal based Heterogeneous Ranking (TemporalHeteRank) method. We demonstrate that TemporalHeteRank is suitable for heterogeneous networks on the intuition that there is a mutually information balance relationship between different types of nodes that could be reflected on ranking results. We also explore the impact of node temporal feature in ranking, then we use the node life span by carefully investigating the issues of feasibility and generality. The experimental results on sina weibo ranking prove the effectiveness of our proposed approach.


Heterogeneous Networks Heterogeneous Ranking Diverse Rank Information Flow Propagation Hotspot Detection 


  1. 1.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  2. 2.
    Mei, Q., Guo, J., Radev, D.: Divrank: The interplay of prestige and diversity in information networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 1009–1018 (2010)Google Scholar
  3. 3.
    Huang, H., Zubiaga, A., Ji, H., Deng, H., Wang, D., Le, H.K., Abdelzaher, T.F., Han, J., Leung, A., Hancock, J., Voss, C.R.: Tweet ranking based on heterogeneous networks. In: Proceedings of the 24th International Conference on Computational Linguistics, COLING 2012, pp. 1239–1256 (2012)Google Scholar
  4. 4.
    Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explorations 14(2), 20–28 (2012)CrossRefGoogle Scholar
  5. 5.
    Li, X., Croft, W.B.: Time-based language models. In: Proceedings of the 12th ACM International Conference on Information and Knowledge Management, CIKM 2003, pp. 469–475 (2003)Google Scholar
  6. 6.
    Keikha, M., Gerani, S., Crestani, F.: Time-based relevance models. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 1087–1088 (2011)Google Scholar
  7. 7.
    Choi, J., Croft, W.B.: Temporal models for microblogs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, pp. 2491–2494 (2012)Google Scholar
  8. 8.
    Zhukovskiy, M., Khropov, A., Gusev, G., Serdyukov, P.: Fresh browserank. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, pp. 1029–1032 (2013)Google Scholar
  9. 9.
    Yan, R., Lapata, M., Li, X.: Tweet recommendation with graph co-ranking. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, ACL 2012, pp. 516–525 (2012)Google Scholar
  10. 10.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kong, S., Feng, L., Sun, G., Luo, K.: Predicting lifespans of popular tweets in microblog. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 1129–1130 (2012)Google Scholar
  12. 12.
    Yang, Z., Tang, J., Li, J.: Learning to rank in heterogeneous network. Sciencepaper Online 4, 273–279 (2011)Google Scholar
  13. 13.
    Cheng, S., Arvanitis, A., Hristidis, V.: How fresh do you want your search results? In: Proceedings of the 22nd ACM International Conference on Conference on Information; Knowledge Management, CIKM 2013, pp. 1271–1280 (2013)Google Scholar
  14. 14.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600 (2010)Google Scholar
  15. 15.
  16. 16.
    Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen?: relationship prediction in heterogeneous information networks. In: Proceedings of the 15th ACM International Conference on Web Search and Data Mining, WSDM 2012, pp. 663–672 (2012)Google Scholar
  17. 17.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 177–187 (2005)Google Scholar
  18. 18.
    Gehrke, J., Ginsparg, P., Kleinberg, J.: Overview of the 2003 kdd cup. ACM SIGKDD Explorations Newsletter 5(2), 149–151 (2003)CrossRefGoogle Scholar
  19. 19.
    Ma, H., Qian, W., Xia, F., He, X., Xu, J., Zhou, A.: Towards modeling popularity of microblogs. Frontiers of Computer Science 7(2), 171–184 (2013)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 2761–2767 (2013)Google Scholar
  21. 21.
    Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2000, pp. 41–48 (2000)Google Scholar
  22. 22.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  23. 23.
    Zhao, X., Zhu, F., Qian, W., Zhou, A.: Impact of multimedia in sina weibo: Popularity and life span. In: Semantic Web and Web Science. Springer Proceedings in Complexity, pp. 55–65 (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Chen Yu
    • 1
  • Ruidan Li
    • 1
  • Dezhong Yao
    • 1
  • Feng Lu
    • 1
  • Hai Jin
    • 1
  1. 1.Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations