Advertisement

Prediction-Based Optimization of Live Virtual Machine Migration

  • Changyuan Chen
  • Jian Cao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8707)

Abstract

Virtual Machine (VM) migration is an important technology to support Infrastructure as a Service (IaaS). Traditional pre-copy and post-copy strategies could function well in LAN but will need considerable time to migrate between remote hosts in WAN. In this paper, we propose a prediction-based strategy to optimize cloud VM migration process over WAN. In this strategy, information about size increments of snapshots is used to determine appropriate time points for migration in order to reduce the downtime during migration. Specifically, we utilize Markov Chain Model to predict the future increasing speed of snapshots. The experiments on KVM showed our approach could achieve satisfying results.

Keywords

Virtual Machine Cloud Service Finish Time Migration Strategy Intensive Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live Migration of Virtual Machines. In: NSDI 2005 (2005)Google Scholar
  2. 2.
    Ibrahim, K.Z., Hofmeyr, S.A., Iancu, C., Roman, E.: Optimized pre-copy live migration for memory intensive applications. In: SC 2011, p. 40 (2011)Google Scholar
  3. 3.
    Ma, F., Liu, F., Liu, Z.: Live virtual machine migration based on improved pre-copy approach. In: ICSESS 2010, pp. 230–233 (2010)Google Scholar
  4. 4.
    Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines. Operating Systems Review 43(3), 14–26 (2009)CrossRefGoogle Scholar
  5. 5.
    Kozuch, M., Satyanarayanan, M.: Internet suspend/resume. In: Proc. IEEE Workshop on Mobile Computing Systems and Applications, Washington, DC, USA, pp. 40–46 (2002)Google Scholar
  6. 6.
    Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S.: Optimizing the migration of virtual computers. ACM SIGOPS OSDI 2002, 377–390 (2002)Google Scholar
  7. 7.
    Whitaker, A., Cox, R.S., Shaw, M., Gribble, S.D.: Constructing Services with Interposable Virtual Hardware. In: NSDI 2004, pp. 169–182 (2004)Google Scholar
  8. 8.
    Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning. In: VEE 2009, pp. 51–60 (2009)Google Scholar
  9. 9.
    Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Machines. In: Proc. USENIX Ann. Technical Conf., pp. 391–394 (April 2005)Google Scholar
  10. 10.
    Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Machines. In: Proc. USENIX Ann. Technical Conf., pp. 391–394 (April 2005)Google Scholar
  11. 11.
    Liu, H., Jin, H., Liao, X.: Live Virtual Machine Migration via Asynchronous Replication and State Synchronization. IEEE Trans. Parallel Distrib. Syst. 22(12), 1986–1999 (2011)CrossRefGoogle Scholar
  12. 12.
    Williams, D., Jamjoom, H., Weatherspoon, H.: The Xen-Blanket: virtualize once, run everywhere. In: EuroSys 2012, pp. 113–126 (2012)Google Scholar
  13. 13.
    Wood, T., Ramakrishnan, Prashant, K.K., Shenoy, J.: CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines. In: VEE 2011, pp. 121–132 (2011)Google Scholar
  14. 14.
    Yang, D., Cao, J., Fu, J.: A pattern fusion model for multi-step-ahead CPU load prediction. Journal of Systems and Software 86(5), 1257–1266 (2013)CrossRefGoogle Scholar
  15. 15.
    Geyer, C.J.: Practical markov chain monte carlo. Statistical Science, 473–483 (1992)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Changyuan Chen
    • 1
  • Jian Cao
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityChina

Personalised recommendations