Advertisement

Wire Length of Midimew-Connected Mesh Network

  • Md Rabiul Awal
  • M. M. Hafizur Rahman
  • Rizal Mohd Nor
  • Tengku Mohd Bin Tengku Sembok
  • Yasuyuki Miura
  • Yasushi Inoguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8707)

Abstract

Midimew connected Mesh Network (MMN) is a Minimal DIstance MEsh with Wrap-around links (midimew) network. In this paper, we present the architecture of MMN and evaluate the total wire length of MMN, TESH, mesh, and torus networks. It is shown that the proposed MMN possesses simple structure and moderate wire length. The total wire length of MMN is slightly higher than that of mesh network and lower than that of 2-D torus network. Overall performance suggests that, MMN is an optimal network among these networks.

Keywords

Massively Parallel Computers Interconnection Network MMN and Total Wire Length 

References

  1. 1.
    Koomey, J.G., Berard, S., Sanchez, M., Wong, H.: Assessing trends in the electrical efficiency of computation over time. In: IEEE Annals of the History of Computing (2009)Google Scholar
  2. 2.
    Beckman, P.: Looking toward exascale computing. In: 9th International Conference on Parallel and Distributed Computing, Applications and Technologies, p. 3 (2008)Google Scholar
  3. 3.
    Yang, Y., Funahashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recursive diagonal torus: an interconnection network for massively parallel computers. IEEE Transactions on Parallel and Distributed Systems 12, 701–715 (2001)CrossRefGoogle Scholar
  4. 4.
    Rahman, M.M., Hafizur., J.X., Masud, M.A., Horiguchi, S.: Network performance of pruned hierarchical torus network. In: 6th IFIP International Conference on Network and Parallel Computing, pp. 9–15 (2009)Google Scholar
  5. 5.
    Abd-El-Barr, M., Al-Somani, T.F.: Topological properties of hierarchical interconnection networks: a review and comparison. J. Elec. and Comp. Engineering 1 (2011)Google Scholar
  6. 6.
    Lai, P.L., Hsu, H.C., Tsai, C.H., Stewart, I.A.: A class of hierarchical graphs as topologies for interconnection networks. J. Theoretical Computer Science 411, 2912–2924 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Liu, Y., Li, C., Han, J.: RTTM: a new hierarchical interconnection network for massively parallel computing. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds.) HPCA 2009. LNCS, vol. 5938, pp. 264–271. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Rahman, M.M.H., Horiguchi, S.: HTN: a new hierarchical interconnection network for massively parallel computers. IEICE Transactions on Information and Systems 86(9), 1479–1486 (2003)Google Scholar
  9. 9.
    Jain, V.K., Ghirmai, T., Horiguchi, S.: TESH: A new hierarchical interconnection network for massively parallel computing. IEICE Transactions on Information and Systems 80, 837–846 (1997)Google Scholar
  10. 10.
    Dally, W.J.: Performance Analysis of k-ary n-cube Interconnection Networks. IEEE Trans. on Computers 39(6), 775–785 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chi-Hsiang, Y., Parhami, B., Emmanouel, A., Varvarigos, E.A., Hua Lee, H.: VLSI layout and packaging of butterfly networks. In: Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 196–205 (2000)Google Scholar
  12. 12.
    Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In: Proceedings of Design Automation Conference, pp. 684–689 (2001)Google Scholar
  13. 13.
    Parhami, B.: Introduction to parallel processing: algorithms and architectures, vol. 1. Springer (1999)Google Scholar
  14. 14.
    Parhami, B., Kwai, D.M.: Challenges in Interconnection Network Design In the Era of Multiprocessor and Massively Parallel Microchips. In: Proc. Int’l Conf. Communications in Computing, pp. 241–246 (2000)Google Scholar
  15. 15.
    Awal, M.R., Rahman, M.H., Akhand, M.A.H.: A New Hierarchical Interconnection Network for Future Generation Parallel Computer. In: Proceedings of 16th International Conference on Computers and Information Technology, pp. 314–319 (2013)Google Scholar
  16. 16.
    Camarero, C., Martinez, C., Beivide, R.: L-networks: A topological model for regular two-dimensional interconnection networks. IEEE Transactions on Computers 62, 1362–1375 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Puente, V., Izu, C., Gregorio, J.A., Beivide, R., Prellezo, J., Vallejo, F.: Improving parallel system performance by changing the arrangement of the network links. In: Proceedings of the 14th International Conference on Supercomputing, pp. 44–53 (2000)Google Scholar
  18. 18.
    Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V., Konow, M., Riepen, M., Gries, M., Droege, G., Larsen, T.L., Steibl, S., Borkar, S., De, V.K., Wijngaart, R.V.D.: A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and DVFS for performance and power scaling. IEEE Journal of Solid-State Circuits 46(1), 173–183 (2011)CrossRefGoogle Scholar
  19. 19.
    Awal, M.R., Rahman, M.H.: Network-on-Chip Implementation of Midimew-Connected Mesh Network. In: Proceedings of 14th International Conference on Parallel and Distributed Computing, Applications and Technology, pp. 265–271 (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Md Rabiul Awal
    • 1
  • M. M. Hafizur Rahman
    • 1
  • Rizal Mohd Nor
    • 1
  • Tengku Mohd Bin Tengku Sembok
    • 2
  • Yasuyuki Miura
    • 3
  • Yasushi Inoguchi
    • 4
  1. 1.Department of Computer ScienceKICT, IIUMJalan GombakMalaysia
  2. 2.Cyber Security CenterNational Defense University MalaysiaKuala LumpurMalaysia
  3. 3.Graduate School of TechnologyShonan Institute of TechnologyFujisawaJapan
  4. 4.Research Center for Advanced Computing InfrastructureJAISTNomi-ShiJapan

Personalised recommendations