The Landscape Metaphor for Visualization of Molecular Similarities

  • Martin GronemannEmail author
  • Michael Jünger
  • Nils Kriege
  • Petra Mutzel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 458)


Clustered graphs are a versatile representation formalism for expressing relations between entities, and simultaneously, reflecting their hierarchical structure. This makes clustered graphs well-suited to model complex structured data. However, obtaining appealing drawings of clustered graphs is a challenging task. We employ the landscape metaphor to visualize clustered graphs in a cheminformatics application. In order to browse chemical compound libraries in a systematic way, we consider two different molecular similarity concepts. Combining the scaffold-based cluster hierarchy with molecular similarity graphs allows for new insights in the analysis of large molecule libraries. Here, like in certain other application domains, the cluster hierarchy does not necessarily reflect the underlying graph structure. We improve the approach taken in [1] by applying a modified treemap algorithm for node positioning that takes the edges of the graph into account. Experiments with real-world instances clearly show that the new algorithm leads to significant improvements in terms of the edge lengths.


Graph drawing Clustered graphs Landscape metaphor Topographic maps Drug discovery Molecule libraries 



We would like to thank Claude Ostermann and Philipp Thiel for their valuable feedback and for sharing their chemical knowledge.


  1. 1.
    Gronemann, M., Jünger, M.: Drawing clustered graphs as topographic maps. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 426–438. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Brown, N.: Chemoinformatics - an introduction for computer scientists. ACM Comput. Surv. 41, 1–38 (2009)CrossRefGoogle Scholar
  3. 3.
    Herhaus, C., Karch, O., Bremm, S., Rippmann, F.: MolWind - mapping molecule spaces to geospatial worlds. Chem. Cent. J. 3, P32 (2009)CrossRefGoogle Scholar
  4. 4.
    Klein, K., Kriege, N., Mutzel, P.: Scaffold hunter: facilitating drug discovery by visual analysis of chemical space. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 176–192. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Lounkine, E., Wawer, M., Wassermann, A.M., Bajorath, J.: SARANEA: a freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets. J. Chem. Inf. Model. 50, 68–78 (2010)CrossRefGoogle Scholar
  6. 6.
    Strobelt, H., Bertini, E., Braun, J., Deussen, O., Groth, U., Mayer, T.U., Merhof, D.: HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform. BMC Bioinform. 13(suppl. 8), S4 (2012)CrossRefGoogle Scholar
  7. 7.
    Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T.I., Mutzel, P., Waldmann, H.: Interactive exploration of chemical space with Scaffold Hunter. Nat. Chem. Biol. 5, 581–583 (2009)CrossRefGoogle Scholar
  8. 8.
    Irwin, J.J.: Staring off into chemical space. Nat. Chem. Biol. 5, 536–537 (2009)CrossRefGoogle Scholar
  9. 9.
    Wawer, M., Peltason, L., Weskamp, N., Teckentrup, A., Bajorath, J.: Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J. Med. Chem. 51, 6075–6084 (2008)CrossRefGoogle Scholar
  10. 10.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21, 1129–1164 (1991)CrossRefGoogle Scholar
  11. 11.
    Schuffenhauer, A., Varin, T.: Rule-based classification of chemical structures by scaffold. Mol. Inform. 30, 646–664 (2011)Google Scholar
  12. 12.
    Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M.A., Waldmann, H.: The scaffold tree - visualization of the scaffold universe by hierarchical scaffold classification. J. Chem. Inf. Model. 47, 47–58 (2007)CrossRefGoogle Scholar
  13. 13.
    Guha, R.: The ups and downs of structure-activity landscapes. In: Bajorath, J. (ed.) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol. 672, pp. 101–117. Humana Press (2011)Google Scholar
  14. 14.
    Peltason, L., Iyer, P., Bajorath, J.: Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs. J. Chem. Inf. Model. 50, 1021–1033 (2010)CrossRefGoogle Scholar
  15. 15.
    Sugiyama, K., Misue, K.: Visualization of structural information: Automatic drawing of compound digraphs. IEEE Trans. SMC 21, 876–892 (1991)MathSciNetGoogle Scholar
  16. 16.
    Huang, M.L., Eades, P.: A fully animated interactive system for clustering and navigating huge graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 374–383. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Gansner, E.R., Hu, Y., Kobourov, S.G., Volinsky, C.: Putting recommendations on the map: visualizing clusters and relations. In: Proceedings of the ACM Conference on Recommender Systems, pp. 345–348 (2009)Google Scholar
  18. 18.
    Gansner, E.R., Hu, Y., Kobourov, S.G.: GMap: Visualizing graphs and clusters as maps. In: Pacific Visualization Symposium (PacificVis), pp. 201–208. IEEE (2010)Google Scholar
  19. 19.
    Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor in information visualization: The role of commonsense geomorphology. J. Am. Soc. Inf. Sci. Technol. 61, 253–270 (2010)Google Scholar
  20. 20.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd Conference on Visualization, pp. 284–291 (1991)Google Scholar
  21. 21.
    Schulz, H.J.: A tree visualization reference. IEEE Comput. Graphics Appl. 31, 11–15 (2011)CrossRefGoogle Scholar
  22. 22.
    Maggiora, G.M., Shanmugasundaram, V.: Molecular similarity measures. Methods Mol. Biol. 672, 39–100 (2011)CrossRefGoogle Scholar
  23. 23.
    Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des. 12, 2111–2120 (2006)CrossRefGoogle Scholar
  24. 24.
    Bon, R.S., Waldmann, H.: Bioactivity-guided navigation of chemical space. Acc. Chem. Res. 43, 1103–1114 (2010)CrossRefGoogle Scholar
  25. 25.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. of Sci. 99, 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    de Berg, M., Onak, K., Sidiropoulos, A.: Fat polygonal partitions with applications to visualization and embeddings. CoRR abs/1009.1866 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Gronemann
    • 1
    Email author
  • Michael Jünger
    • 1
  • Nils Kriege
    • 2
  • Petra Mutzel
    • 2
  1. 1.Institut für InformatikUniversität zu KölnCologneGermany
  2. 2.Department of Computer ScienceTechnische Universität DortmundDortmundGermany

Personalised recommendations