Skip to main content

Shape from Motion Blur Caused by Random Camera Rotations Imitating Fixational Eye Movements

  • Conference paper
  • First Online:
  • 735 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 458))

Abstract

Small involuntary vibrations of the human eyeball called “fixational eye movements” play a role in image analysis, such as for contrast enhancement and edge detection. This mechanism can be interpreted as stochastic resonance by biological processes, in particular, by neuron dynamics. We propose two algorithms that use the motion blur caused by many small random camera motions to recover the depth from a camera to a target object. The first is a two-step recovery method that detects the motion blur of an image and then analyzes it to determine the depth. The second method directly recovers the depth without explicitly detecting the motion blur, and it is expected to be highly accurate. From the view point of a computational optimality, in this study we evaluate the performance of the second method called direct method through numerical simulations using artificial images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech House, London (1998)

    Google Scholar 

  2. Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  3. Prokopowicz, P.N., Cooper, P.R.: The dynamic retina: contrast and motion detection for active vision. Int. J. Comput. Vis. 16, 191–204 (1995)

    Article  Google Scholar 

  4. Hongler, M.-O., de Meneses, Y.L., Beyeler, A., Jacot, J.: The resonant retina: exploiting vibration noise to optimally detect edges in an image. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1051–1062 (2003)

    Article  Google Scholar 

  5. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–252 (1998)

    Article  Google Scholar 

  6. Greenwood, P.E., Ward, L.M., Wefelmeyer, W.: Statistical analysis of stochastic resonance in a simple setting. Phys. Rev. E 60, 4687–4696 (1999)

    Google Scholar 

  7. Stemmler, M.: A single spike suffices: the simplest form of stochastic resonance in model neurons. Netw.: Comput. Neural Syst. 7, 687–716 (1996)

    Article  MATH  Google Scholar 

  8. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5, 229–240 (2004)

    Article  Google Scholar 

  9. Tagawa, N.: Depth perception model based on fixational eye movements using Bayesian statistical inference. In: International Conference on Pattern Recognition, pp. 1662–1665 (2010)

    Google Scholar 

  10. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  11. Simoncelli, E.P.: Bayesian multi-scale differential optical flow. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications, vol. 2, pp. 397–422. Academic Press, San Diego (1999)

    Google Scholar 

  12. Bruhn, A., Weickert, J.: Lucas/Kanade meets Horn/Schunk: combining local and global optic flow methods. Int. J. Comput. Vis. 61, 211–231 (2005)

    Article  Google Scholar 

  13. Sorel, M., Flusser, J.: Space-variant restoration of images degraded by camera motion blur. IEEE Trans. Image Process. 17, 105–116 (2008)

    Article  MathSciNet  Google Scholar 

  14. Paramanand, C., Rajagopalan, A.N.: Depth from motion and optical blur with an unscented Kalman filter. IEEE Trans. Image Process. 21, 2798–2811 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tagawa, N., Kawaguchi, J., Naganuma, S., Okubo, K.: Direct 3-D shape recovery from image sequence based on multi-scale Bayesian network. In: International Conference on Pattern Recognition, pp. CD–ROM (2008)

    Google Scholar 

  16. Tagawa, N., Naganuma, S.: Structure and motion from image sequence based on multi-scale Bayesian network. In: Yin, P.-Y. (ed.) Pattern Recognition, pp. 73–98. In-Tech, Croatia (2009)

    Google Scholar 

  17. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16, 824–831 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Tagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tagawa, N. (2014). Shape from Motion Blur Caused by Random Camera Rotations Imitating Fixational Eye Movements. In: Battiato, S., Coquillart, S., Laramee, R., Kerren, A., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics -- Theory and Applications. VISIGRAPP 2013. Communications in Computer and Information Science, vol 458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44911-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44911-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44910-3

  • Online ISBN: 978-3-662-44911-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics