Skip to main content

Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices

  • Chapter
Applications of Ionic Liquids in Polymer Science and Technology

Abstract

The synthesis of interpenetrating polymer networks (IPNs) is proposed as an alternative to polyether-based (co)polymers or networks for the design of solid polymer electrolytes (SPEs). IPNs were prepared from an elastomer bringing the mechanical properties and poly(ethylene oxide). These IPNs, swollen by N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)-imide (EMITFSI), possess an ionic conductivity close to 10−3 S cm−1 at 30 °C. In order to form conducting IPNs, chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) has been carried out within the SPE IPN. A pseudo-trilayer configuration has been obtained with the SPE IPN sandwiched between two interpenetrated PEDOT electrodes. Controlling the PEDOT content from 0.3 to 24 wt% in the material, electrochromic, electroreflective, or electromechanical devices is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A DPM (1997) Handbook of organic conductive molecules and polymers, volume 2, conductive polymers synthesis and electrical properties. Wiley, Chichester

    Google Scholar 

  2. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  Google Scholar 

  3. Heywang G, Jonas F (1992) Poly(alkylenedioxythiophene)s – new, very stable conducting polymers. Adv Mater 4:116–118

    Article  Google Scholar 

  4. Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353

    Article  Google Scholar 

  5. Gustafsson-Carlberg JC, Inganäs O, Andersson MR, Booth C, Azens A, Granqvist CG (1995) Tuning the bandgap for polymeric smart windows and displays. Electrochim Acta 40:2233–2235

    Article  Google Scholar 

  6. Łapkowski M, Proń A (2000) Electrochemical oxidation of poly(3,4-ethylenediox ythiophene) – “in situ” conductivity and spectroscopic investigations. Synth Met 110:79–83

    Article  Google Scholar 

  7. Chen X, Xing K-Z, Inganäs O (1996) Electrochemically induced volume changes in poly(3,4-ethylenedioxythiophene). Chem Mater 8:2439–2443

    Article  Google Scholar 

  8. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212

    Article  Google Scholar 

  9. Liang W, Lei J, Martin CR (1992) Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synth Met 52:227–239

    Article  Google Scholar 

  10. Zhou D, Spinks GM, Wallace GG, Tiyapiboonchaiya C, MacFarlane DR, Forsyth M et al (2003) Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochim Acta 48:2355–2359

    Article  Google Scholar 

  11. Temmer R, Must I, Kaasik F, Aabloo A, Tamm T (2012) Combined chemical and electrochemical synthesis methods for metal-free polypyrrole actuators. Sens Actuators B 166–167:411–418

    Article  Google Scholar 

  12. Madden JD, Cush RA, Kanigan TS, Hunter IW (2000) Fast contracting polypyrrole actuators. Synth Met 113:185–192

    Article  Google Scholar 

  13. Kiefer R, Bowmaker GA, Cooney RP, Kilmartin PA, Travas-Sejdic J (2008) Cation driven actuation for free standing PEDOT films prepared from propylene carbonate electrolytes containing TBACF3SO3. Electrochim Acta 53:2593–2599

    Article  Google Scholar 

  14. Hara S, Zama T, Takashima W, Kaneto K (2006) Tris(trifluoromethylsulfonyl)methide-doped polypyrrole as a conducting polymer actuator with large electrochemical strain. Synth Met 156:351–355

    Article  Google Scholar 

  15. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7:319–327

    Article  Google Scholar 

  16. Armand MB, Chabago JM, Duclot M (n.d.) Extended abstracts. In: The 2nd international conference on solid electrolytes, St. Andrews

    Google Scholar 

  17. MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews. Elsevier, London

    Google Scholar 

  18. Armand M (1983) Polymer solid electrolytes – an overview. Solid State Ion 9–10:745–754

    Article  Google Scholar 

  19. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J et al (2002) Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297:983–987

    Article  ADS  Google Scholar 

  20. Marwanta E, Mizumo T, Nakamura N, Ohno H (2005) Improved ionic conductivity of nitrile rubber/ionic liquid composites. Polymer 46:3795–3800

    Article  Google Scholar 

  21. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Article  Google Scholar 

  22. Matoba Y (2002) Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s. Solid State Ion 147:403–409

    Article  Google Scholar 

  23. Klempner D, Sperling LH, Utracki LA (eds) (1994) Interpenetrating polymer networks. American Chemical Society, Washington, DC

    Google Scholar 

  24. Plesse C, Vidal F, Gauthier C, Pelletier J-M, Chevrot C, Teyssié D (2007) Poly(ethylene oxide)/polybutadiene based IPNs synthesis and characterization. Polymer 48:696–703

    Article  Google Scholar 

  25. Vidal F, Popp J-F, Plesse C, Chevrot C, Teyssié D (2003) Feasibility of conducting semi-interpenetrating networks based on a poly(ethylene oxide) network and poly(3,4-ethylenedioxythiophene) in actuator design. J Appl Polym Sci 90:3569–3577

    Article  Google Scholar 

  26. Gauthier C, Plesse C, Vidal F, Pelletier J-M, Chevrot C, Teyssié D (2007) Polybutadiene/poly(ethylene oxide) based IPNs, part II: mechanical modelling and LiClO4 loading as tools for IPN morphology investigation. Polymer 48:7476–7483

    Article  Google Scholar 

  27. Vidal F, Plesse C, Palaprat G, Juger J, Gauthier C, Pelletier J-M et al (2013) Influence of the poly(ethylene oxide)/polybutadiene IPN morphology on the ionic conductivity of ionic liquid. Eur Polym J 49:2670–2679

    Article  Google Scholar 

  28. Vidal F, Plesse C, Teyssié D, Chevrot C (2004) Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth Met 142:287–291

    Article  Google Scholar 

  29. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  Google Scholar 

  30. Festin N, Maziz A, Plesse C, Teyssié D, Chevrot C, Vidal F (2013) Robust solid polymer electrolyte for conducting IPN actuators. Smart Mater Struct 22:104005

    Article  ADS  Google Scholar 

  31. Goujon LJ, Khaldi A, Maziz A, Plesse C, Nguyen GTM, Aubert P-H et al (2011) Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 44:9683–9691

    Article  ADS  Google Scholar 

  32. Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46:2910–2912

    Article  Google Scholar 

  33. Plesse C, Khaldi A, Wang Q, Cattan E, Teyssié D, Chevrot C et al (2011) Polyethylene oxide–polytetrahydrofurane–PEDOT conducting interpenetrating polymer networks for high speed actuators. Smart Mater Struct 20:124002

    Article  ADS  Google Scholar 

  34. Verge P, Vidal F, Aubert P-H, Beouch L, Tran-Van F, Goubard F et al (2008) Thermal ageing of poly(ethylene oxide)/poly(3,4-ethylenedioxythiophene) semi-IPNs. Eur Polym J 44:3864–3870

    Article  Google Scholar 

  35. Morlat S, Gardette J-L (2001) Phototransformation of water-soluble polymers. I: photo- and thermooxidation of poly(ethylene oxide) in solid state. Polymer 42:6071–6079

    Article  Google Scholar 

  36. Plesse C, Vidal F, Randriamahazaka H, Teyssié D, Chevrot C (2005) Synthesis and characterization of conducting interpenetrating polymer networks for new actuators. Polymer 46:7771–7778

    Article  Google Scholar 

  37. Festin N, Plesse C, Pirim P, Chevrot C, Vidal F (2014) Electro-active interpenetrating polymer networks actuators and strain sensors: fabrication, position control and sensing properties. Sens Actuators B Chem 193:82–88

    Article  Google Scholar 

  38. Plesse C, Khaldi A, Soyer C, Cattan E, Teyssié D, Chevrot C et al (2012) PEDOT based conducting IPN actuators: effects of electrolyte on actuation. Adv Sci Technol 79:53–62

    Article  Google Scholar 

  39. Zoppi R, Depaoli M (1992) Synthesis and characterization of a composite containing poly(3-methylthiophene) and nitrilic rubber. Polymer 33:4611–4616

    Article  Google Scholar 

  40. Tassi EL, De Paoli M-A (1992) An electroactive elastomer: polyaniline/nitrile rubber. Polymer 33:2427–2430

    Article  Google Scholar 

  41. Lav TX, Tran-Van F, Vidal F, Péralta S, Chevrot C, Teyssié D et al (2008) Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices. Thin Solid Films 516:7223–7229

    Article  ADS  Google Scholar 

  42. Gangopadhyay R, De A (2002) An electrochemically synthesized conducting semi-IPN from polypyrrole and poly(vinyl alcohol). J Mater Chem 12:3591–3598

    Article  Google Scholar 

  43. Fabre-Francke I, Aubert P-H, Alfonsi S, Vidal F, Sauques L, Chevrot C (2012) Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: application to electroreflective surfaces and devices. Sol Energ Mat Sol C 99:109–115

    Article  Google Scholar 

  44. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Article  ADS  Google Scholar 

  45. Chevrot C, Teyssié D, Verge P, Goujon L, Tran-Van F, Vidal F et al (2011) Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity. In: Bar-Cohen Y, Carpi F (eds) Proceedings of the SPIE 7976. Electroactive polymer actuators and devices (EAPAD) 2011. SPIE, San Diego, pp 79760M–79760M–10. doi:10.1117/12.882122

    Google Scholar 

  46. Deb SK (1969) A novel electrophotographic system. Appl Opt 8(suppl S1):192–195

    Google Scholar 

  47. Aubert P-H, Argun AA, Cirpan A, Tanner DB, Reynolds JR (2004) Microporous patterned electrodes for color-matched electrochromic polymer displays. Chem Mater 16:2386–2393

    Article  Google Scholar 

  48. Groenendaal L, Zotti G, Aubert P-H, Waybright SM, Reynolds JR (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv Mater 15:855–879

    Article  Google Scholar 

  49. Chandrasekhar P, Dooley TJ (1995) Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems. In: Yang SC, Chandrasekhar P (eds) Proceeding of the SPIE 2528. Optical and photonic applications of electroactive and conducting polymers. SPIE, San Diego, pp 169–180. doi:10.1117/12.219540

    Google Scholar 

  50. Pagès H, Topart P, Lemordant D (2001) Wide band electrochromic displays based on thin conducting polymer films. Electrochim Acta 46:2137–2143

    Article  Google Scholar 

  51. Dyer AL, Grenier CRG, Reynolds JR (2007) A poly(3,4-alkylenedioxythiophene) electrochromic variable optical attenuator with near-infrared reflectivity tuned independently of the visible region. Adv Funct Mater 17:1480–1486

    Article  Google Scholar 

  52. Chang Y, Lee K, Kiebooms R, Aleshin A, Heeger A (1999) Reflectance of conducting poly(3,4-ethylenedioxythiophene). Synth Met 105:203–206

    Article  Google Scholar 

  53. Lee K, Reghu M, Yuh EL, Sariciftci NS, Heeger AJ (1995) Infrared reflectance of polypyrrole: “metal” with a gap in the spectrum of charged excitations. Synth Met 68:287–291

    Article  Google Scholar 

  54. Vidal F, Plesse C, Aubert P-H, Beouch L, Tran-Van F, Palaprat G et al (2010) Poly(3,4-ethylenedioxythiophene)-containing semi-interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices. Polym Int 59:313–320

    Article  Google Scholar 

  55. Tran-Van F, Beouch L, Vidal F, Yammine P, Teyssié D, Chevrot C (2008) Self-supported semi-interpenetrating polymer networks for new design of electrochromic devices. Electrochim Acta 53:4336–4343

    Article  Google Scholar 

  56. Verge P, Mallouki M, Beouch L, Aubert PH, Vidal F, Tran-Van F et al (2010) Electroactive polymers with semi-IPN architectures for electrochromic devices. Mol Cryst Liq Cryst 522:53/[353]–60/[360]

    Article  Google Scholar 

  57. Dietrich M, Heinze J, Heywang G, Jonas F (1994) Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J Electroanal Chem 369:87–92

    Article  Google Scholar 

  58. Mallouki M, Aubert P-H, Beouch L, Vidal F, Chevrot C (2012) Symmetrical electrochromic device from poly(3,4-(2,2-dimethylpropylenedioxy)thiophene)-based semi-interpenetrating polymer network. Synth Met 162:1903–1911

    Article  Google Scholar 

  59. Chandrasekhar P, Zay BJ, McQueeney T, Scara A, Ross D, Birur GC et al (2003) Conducting polymer (CP) infrared electrochromics in spacecraft thermal control and military applications. Synth Met 135–136:23–24

    Article  Google Scholar 

  60. Demiryont H (2008) Emissivity-modulating electrochromic device for satellite thermal control. SPIE Newsroom. doi: 10.1117/2.1200802.1011

    Google Scholar 

  61. Verge P, Aubert P-H, Vidal F, Sauques L, Tran-Van F, Peralta S et al (2010) New prospects in the conception of IR electro-tunable devices: the use of conducting semi-interpenetrating polymer network architecture. Chem Mater 22:4539–4547

    Article  Google Scholar 

  62. Teissier A, Dudon J-P, Aubert P-H, Vidal F, Remaury S, Crouzet J et al (2012) Feasibility of conducting semi-IPN with variable electro-emissivity: a promising way for spacecraft thermal control. Sol Energ Mat Sol C 99:116–122

    Article  Google Scholar 

  63. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212

    Article  Google Scholar 

  64. Arias-Pardilla J, Plesse C, Khaldi A, Vidal F, Chevrot C, Otero TF (2011) Self-supported semi-interpenetrating polymer networks as reactive ambient sensors. J Electroanal Chem 652:37–43

    Article  Google Scholar 

  65. Vidal F, Plesse C, Randriamahazaka H, Teyssie D, Chevrot C (2006) Long-life air working semi-IPN/ionic liquid: new precursor of artificial muscles. Mol Cryst Liq Cryst 448:95/[697]–102/[704]

    Article  Google Scholar 

  66. Plesse C, Khaldi A, Festin N, Pirim P, Cattan E, Teyssie D, Chevrot C, Vidal F et al (2010) Conducting IPNs based electrochemical actuators: from polymer chemistry to biomimetic integration. In: Borgmann H (ed) Actuator 10, conference proceedings, Bremen, pp 444–447

    Google Scholar 

  67. Vidal F, Plesse C, Palaprat G, Juger J, Citerin J, Kheddar A, Chevrot C, Teyssie D (2009) Synthesis and characterization of IPNs for electrochemical actuators. Adv Sci Technol 61:8–17

    Article  Google Scholar 

  68. Vidal F, Plesse C, Palaprat G, Kheddar A, Citerin J, Teyssié D et al (2006) Conducting IPN actuators: from polymer chemistry to actuator with linear actuation. Synth Met 156:1299–1304

    Article  Google Scholar 

  69. Festin N, Plesse C, Chevrot C, Teyssié D, Pirim P, Vidal F (2011) Conducting IPN actuators for biomimetic vision system. In: Bar-Cohen Y, Carpi F (eds) Proceedings of the SPIE 7976. The international society for optical engineering, electroactive polymer actuators and devices. SPIE, San Diego, pp 79760K–79760K–8. doi:10.1117/12.877634

    Google Scholar 

  70. Festin N, Plesse C, Chevrot C, Teyssié D, Josselin L, Pirim P et al (2011) Actuation and sensing properties of electroactive polymer whiskers. Procedia Comput Sci 7:S4–S7

    Article  Google Scholar 

  71. Randriamahazaka H, Plesse C, Vidal F, Gauthier C, Chevrot C, Teyssie D (2004) Actuator based on Poly(3,4-ethylenedioxythiophene)/PEO/elastomer IPNs. In: Bar-Cohen Y (ed) Proceedings of the SPIE 5385. Smart structures and materials 2004: electroactive polymer actuators and devices (EAPAD). SPIE, San Diego, pp 294–301. doi:10.1117/12.532878

    Google Scholar 

  72. Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K (2009) Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives. Sens Actuators B 141:179–186

    Article  Google Scholar 

  73. Lu W, Smela E, Adams P, Zuccarello G, Mattes BR (2004) Development of solid-in-hollow electrochemical linear actuators using highly conductive polyaniline. Chem Mater 16:1615–1621

    Article  Google Scholar 

  74. Wu Y, Alici G, Spinks GM, Wallace GG (2006) Fast trilayer polypyrrole bending actuators for high speed applications. Synth Met 156:1017–1022

    Article  Google Scholar 

  75. Smela E (1999) Microfabrication of PPy microactuators and other conjugated polymer devices. J Micromech Microeng 9:1–18

    Article  Google Scholar 

  76. Holdcroft S (2001) Patterning π-conjugated polymers. Adv Mater 13:1753–1765

    Article  Google Scholar 

  77. Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C et al (2011) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101

    Article  ADS  Google Scholar 

  78. Khaldi A, Plesse C, Soyer C, Chevrot C, Teyssié D, Vidal F et al (2012) Patterning process and actuation in open air of micro-beam actuator based on Conducting IPNs. In: Bar-Cohen Y (ed) Proceedings of the SPIE 8340. Electroactive polymer actuators and devices (EAPAD) 2012, SPIE, San Diego, pp 83400J–83400J–9. doi:10.1117/12.915086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teyssié, D., Chevrot, C., Aubert, PH., Plesse, C., Vidal, F. (2015). Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_11

Download citation

Publish with us

Policies and ethics