Advertisement

Efficient Verifiable Multi-Secret Sharing Based on Y.C.H Scheme

  • Appala Naidu Tentu
  • Allam Appa Rao
Part of the Communications in Computer and Information Science book series (CCIS, volume 448)

Abstract

In this paper, we propose an efficient verifiable multi-secret sharing protocol based on an identity based signature scheme, that uses identities for its participants. The scheme makes use of advantages of identity based signature scheme and hash function for the verifiability which does not require much computation. It checks either dealer or participant(s) honesty, that means a corrupted dealer may provide a fake secret or a participant may provide a fake share to the other participants in the reconstruction phase. In the previous proposed schemes, dealer [15] (or) participants [12,16] could communicate with each other securely before the secret distribution phase for sending secret shadows and they used exponential functions for verification. In our scheme, we do not require pre-secure communication between a dealer and participants, although we use a two-variable way for the distribution purpose but we do not prevent from any exponential functions for the verification phase. Our scheme resist a dealer/participant(s) cheating behaviour efficiently.

Keywords

threshold secret sharing multi-secret sharing verifiable identity based signature hash function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  2. 2.
    Dehkordi, M.H., Mashhadi, S.: An efficient threshold verifiable multi-secret sharing. Computer Standards and Interfaces 30, 187–190 (2008)CrossRefGoogle Scholar
  3. 3.
    Chan, C.W., Chang, C.C.: A Scheme for Threshold Multi secret Sharing. Applied Mathematics and Computation 166(1), 1–14 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chien, H.Y., Jan, J.K., Tseng, Y.M.: A practical (t,n) multi-secret sharing scheme. IEICE Trans. Fundamentals E83-A 12, 2762–2765 (2000)Google Scholar
  5. 5.
    Goldwasser, S., Bellare, M.: http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
  6. 6.
    Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret Sharing in Multilevel and Compartmented Groups. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 367–378. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electronics Letters 30(19), 1591–1592 (1994)CrossRefGoogle Scholar
  8. 8.
    He, J., Dawson, E.: Multi secret-sharing scheme based on one-way function. Electronics Letters 31(2), 93–95 (1995)CrossRefGoogle Scholar
  9. 9.
    Hwang, R.-J., Chang, C.-C.: An on-line secret sharing scheme for multi-secrets. Computer Communications 21(13), 1170–1176 (1998)CrossRefGoogle Scholar
  10. 10.
    Menezes, A., Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press (1996)Google Scholar
  11. 11.
    Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Shao, J., Cao, Z.-F.: A new efficient (t,n) verifiable multi-secret sharing (VMSS) based on Y.C.H scheme. Applied Mathematics and Computation 168, 135–140 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Yang, C.-C., Chang, T.-Y., Hwang, M.-S.: A (t,n) multi-secret sharing scheme. Applied Mathematics and Computation 151, 483–490 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zhao, J., Zhang, J., Zhao, R.: A practical verifiable multi-secret sharing scheme. Computer Standards and Interfaces 29(1), 138–141 (2007)CrossRefGoogle Scholar
  17. 17.
    Chien, J.H.-Y., Tseng, J.-K., et al.: A practical (t,n) multi-secret sharing. IEICE Transactions on Fundamentals of Electronics. Communications and Computer Sciences E83-A (12), 2762–2765 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Appala Naidu Tentu
    • 1
  • Allam Appa Rao
    • 1
  1. 1.CR Rao Advanced Institute of Mathematics, Statistics, and Computer ScienceUniversity of Hyderabad CampusHyderabadIndia

Personalised recommendations