Advertisement

QUELLE – A Framework for Accelerating the Development of Elastic Systems

  • Daniel Moldovan
  • Georgiana Copil
  • Hong-Linh Truong
  • Schahram Dustdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8745)

Abstract

A large number of cloud providers offer diverse types of cloud services for constructing complex ”cloud-native” software. However, there is a lack of supporting tools and mechanisms for accelerating the development of cloud-native software-defined elastic systems (SESs) based on elasticity capabilities of cloud services. In this paper we introduce QUELLE – a framework for evaluating and recommending SES deployment configurations. QUELLE presents models for describing the elasticity capabilities of cloud services and capturing elasticity requirements of SESs. Based on that QUELLE introduces novel functions and algorithms for quantifying the elasticity capabilities of cloud services. QUELLE’s algorithms can recommend SES deployment configurations from cloud services that both provide the required elasticity, and fulfill cost, quality, and resource requirements, and thus can be incorporated into different phases of the development of SESs. We present several experiments based on real-world cloud services for the development of an elastic machine-to-machine data-as-a-service system.

Keywords

cloud service software-defined elasticity capability elasticity quantification 

References

  1. 1.
    Chang, C.W., Liu, P., Wu, J.J.: Probability-based cloud storage providers selection algorithms with maximum availability. In: 2012 41st International Conference on Parallel Processing (ICPP), pp. 199–208 (2012)Google Scholar
  2. 2.
    Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level Elasticity Control of Cloud Services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Dastjerdi, A., Buyya, R.: An autonomous reliability-aware negotiation strategy for cloud computing environments. In: International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 284–291. IEEE/ACM (2012)Google Scholar
  4. 4.
    Demchenko, Y., et al.: Gembus based services composition platform for cloud paas. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 32–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes. IEEE Computing (5), 66–71 (2011)Google Scholar
  6. 6.
    Goncalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Melander, B., Mangs, J.E.: Cloudml: An integrated language for resource, service and request description for d-clouds. In: International Conference on Cloud Computing Technology and Science (CloudCom), pp. 399–406. IEEE (2011)Google Scholar
  7. 7.
    Kamateri, E., et al.: Cloud4SOA: A semantic-interoperability paaS solution for multi-cloud platform management and portability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 64–78. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A modeling tool for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Nitto, E.D.: Supporting the development and operation of multi-cloud applications: The modaclouds approach. In: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE (2013)Google Scholar
  10. 10.
    Patiniotakis, I., Rizou, S., Verginadis, Y., Mentzas, G.: Managing imprecise criteria in cloud service ranking with a fuzzy multi-criteria decision making method. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 34–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and elasticity challenges of deploying business applications on public cloud infrastructure. Journal of Internet Services and Applications, 173–193 (2011)Google Scholar
  12. 12.
    Truong, H.L., Dustdar, S., Copil, G., Gambi, A., Hummer, W., Le, D.H., Moldovan, D.: CoMoT - A Platform-as-a-Service for Elasticity in the Cloud. In: International Workshop on the Future of PaaS. IEEE (2014)Google Scholar
  13. 13.
    Villegas, D., Antoniou, A., Sadjadi, S., Iosup, A.: An analysis of provisioning and allocation policies for infrastructure-as-a-service clouds. In: International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 612–619. IEEE/ACM (2012)Google Scholar
  14. 14.
    Wittern, E., Kuhlenkamp, J., Menzel, M.: Cloud service selection based on variability modeling. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 127–141. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A declarative recommender system for cloud infrastructure services selection. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714, pp. 102–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2014

Authors and Affiliations

  • Daniel Moldovan
    • 1
  • Georgiana Copil
    • 1
  • Hong-Linh Truong
    • 1
  • Schahram Dustdar
    • 1
  1. 1.Distributed Systems GroupVienna University of TechnologyAustria

Personalised recommendations