Ranked Tiling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8725)


Tiling is a well-known pattern mining technique. Traditionally, it discovers large areas of ones in binary databases or matrices, where an area is defined by a set of rows and a set of columns. In this paper, we introduce the novel problem of ranked tiling, which is concerned with finding interesting areas in ranked data. In this data, each transaction defines a complete ranking of the columns. Ranked data occurs naturally in applications like sports or other competitions. It is also a useful abstraction when dealing with numeric data in which the rows are incomparable.

We introduce a scoring function for ranked tiling, as well as an algorithm using constraint programming and optimization principles. We empirically evaluate the approach on both synthetic and real-life datasets, and demonstrate the applicability of the framework in several case studies. One case study involves a heterogeneous dataset concerning the discovery of biomarkers for different subtypes of breast cancer patients. An analysis of the tiles by a domain expert shows that our approach can lead to the discovery of novel insights.


tiling ranked data numerical data pattern mining 


  1. 1.
    Geerts, F., Goethals, B., Mielikäinen, T.: Tiling Databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: KDD, pp. 204–212 (2008)Google Scholar
  3. 3.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl. 1), S136–S144 (2002)Google Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: The 8th International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–103 (2000)Google Scholar
  5. 5.
    Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions. Genome Research 13, 703–716 (2003)CrossRefGoogle Scholar
  6. 6.
    Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data demonstrated through systematic performance tests. Computational Statistics & Data Analysis 48(2), 235–254 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W., Bijnens, L., Göhlmann, H.W.H., Shkedy, Z., Clevert, D.A.: FABIA: Factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)CrossRefGoogle Scholar
  8. 8.
    Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular organization in the yeast transcriptional network. Nature Genetics 31(4), 370–377 (2002)Google Scholar
  9. 9.
    Truong, D.T., Battiti, R., Brunato, M.: Discovering Non-redundant Overlapping Biclusters on Gene Expression Data. In: ICDM 2013, pp. 747–756. IEEE (2013)Google Scholar
  10. 10.
    The Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (October 2012)Google Scholar
  11. 11.
    Parker, J.S., Mullins, M., Cheang, M.C.U., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., Quackenbush, J.F., Stijleman, I.J., Palazzo, J., Marron, J.S., Nobel, A.B., Mardis, E., Nielsen, T.O., Ellis, M.J., Perou, C.M., Bernard, P.S.: Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology 27(8), 1160–1167 (2009)CrossRefGoogle Scholar
  12. 12.
    Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., Getz, G.: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology 12(4) (2011)Google Scholar
  13. 13.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  14. 14.
    Calders, T., Goethals, B., Jaroszewicz, S.: Mining rank-correlated sets of numerical attributes. In: KDD 2006, pp. 96–105. ACM, New York (2006)Google Scholar
  15. 15.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting Numerical Pattern Mining with Formal Concept Analysis. In: IJCAI, pp. 1342–1347 (2011)Google Scholar
  16. 16.
    Song, C., Ge, T.: Discovering and managing quantitative association rules. In: CIKM 2013, pp. 2429–2434. ACM, New York (2013)Google Scholar
  17. 17.
    Kontonasios, K.-N., Vreeken, J., De Bie, T.: Maximum entropy models for iteratively identifying subjectively interesting structure in real-valued data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 256–271. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceKU LeuvenBelgium
  2. 2.Leiden Institute for Advanced Computer ScienceUniversiteit LeidenThe Netherlands
  3. 3.Department of Microbial and Molecular SystemsKU LeuvenBelgium
  4. 4.Department of Plant Biotechnology and BioinformaticsGhent UniversityBelgium
  5. 5.Department of Information TechnologyiMinds, Ghent UniversityBelgium

Personalised recommendations