Andrews, C., Endert, A., North, C.: Space to Think: Large High-resolution Displays for Sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 55–64. ACM (2010)
Google Scholar
Arbenz, P.: Lecture Notes on Solving Large Scale Eigenvalue Problems, pp. 77–93. ETH Zürich (2012)
Google Scholar
Bunch, J.R., Nielsen, C.P., Sorensen, D.: Rank-one modification of the symmetric eigenproblem. Numerische Mathematik 31 (1978)
Google Scholar
Callahan, E., Koenemann, J.: A comparative usability evaluation of user interfaces for online product catalog. In: Proceedings of the 2nd ACM Conference on Electronic Commerce (EC), pp. 197–206. ACM (2000)
Google Scholar
Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press (2006)
Google Scholar
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall/CRC (2000)
Google Scholar
Dinuzzo, F., Schölkopf, B.: The representer theorem for Hilbert spaces: A necessary and sufficient condition. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS), pp. 189–196 (2012)
Google Scholar
Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-level interaction with statistical models for visual analytics. In: IEEE VAST, pp. 121–130. IEEE (2011)
Google Scholar
Forsythe, G.E., Golub, G.H.: On the Stationary Values of a Second-Degree Polynomial on the Unit Sphere. Journal of the Society for Industrial and Applied Mathematics 13(4), 1050–1068 (1965)
CrossRef
MATH
MathSciNet
Google Scholar
Gander, W.: Least Squares with a Quadratic Constraint. Numerische Mathematik 36, 291–308 (1981)
CrossRef
MATH
MathSciNet
Google Scholar
Gander, W., Golub, G., von Matt, U.: A constrained eigenvalue problem. Linear Algebra and its Applications 114-115, 815–839 (1989)
Google Scholar
Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel View of the Dimensionality Reduction of Manifolds. In: Proceedings of the 21st International Conference on Machine Learning (2004)
Google Scholar
Izenman, A.J.: Linear Discriminant Analysis. Springer (2008)
Google Scholar
Jeong, D.H., Ziemkiewicz, C., Fisher, B.D., Ribarsky, W., Chang, R.: iPCA: An Interactive System for PCA-based Visual Analytics. Comput. Graph. Forum 28(3), 767–774 (2009)
CrossRef
Google Scholar
Jolliffe, I.T.: Principal Component Analysis. Springer (1986)
Google Scholar
Leman, S., House, L., Maiti, D., Endert, A., North, C.: Visual to Parametric Interaction (V2PI). PLoS One 8, e50474 (2013)
Google Scholar
Li, R.C.: Solving secular equations stably and efficiently (1993)
Google Scholar
Paurat, D., Gärtner, T.: Invis: A tool for interactive visual data analysis. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 672–676. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Paurat, D., Oglic, D., Gärtner, T.: Supervised PCA for Interactive Data Analysis. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS) 2nd Workshop on Spectral Learning (2013)
Google Scholar
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
CrossRef
Google Scholar
Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) COLT/EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)
Google Scholar
Shearer, C.: The CRISP-DM model: The new blueprint for data mining. Journal of Data Warehousing 5(4), 13–22 (2000)
Google Scholar
Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
CrossRef
Google Scholar
Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, vol. 2, pp. 523–531 (1975)
Google Scholar
Walder, C., Henao, R., Mørup, M., Hansen, L.K.: Semi-Supervised Kernel PCA. Computing Research Repository (CoRR) abs/1008.1398 (2010)
Google Scholar
Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 988–995 (2004)
Google Scholar