Advertisement

Interactive Knowledge-Based Kernel PCA

  • Dino Oglic
  • Daniel Paurat
  • Thomas Gärtner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8725)

Abstract

Data understanding is an iterative process in which domain experts combine their knowledge with the data at hand to explore and confirm hypotheses. One important set of tools for exploring hypotheses about data are visualizations. Often, however, traditional, unsupervised dimensionality reduction algorithms are used for visualization. These tools allow for interaction, i.e., exploring different visualizations, only by means of manipulating some technical parameters of the algorithm. Therefore, instead of being able to intuitively interact with the visualization, domain experts have to learn and argue about these technical parameters. In this paper we propose a knowledge-based kernel PCA approach that allows for intuitive interaction with data visualizations. Each embedding direction is given by a non-convex quadratic optimization problem over an ellipsoid and has a globally optimal solution in the kernel feature space. A solution can be found in polynomial time using the algorithm presented in this paper. To facilitate direct feedback, i.e., updating the whole embedding with a sufficiently high frame-rate during interaction, we reduce the computational complexity further by incremental up- and down-dating. Our empirical evaluation demonstrates the flexibility and utility of this approach.

Keywords

Interactive visualization kernel methods dimensionality reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, C., Endert, A., North, C.: Space to Think: Large High-resolution Displays for Sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 55–64. ACM (2010)Google Scholar
  2. 2.
    Arbenz, P.: Lecture Notes on Solving Large Scale Eigenvalue Problems, pp. 77–93. ETH Zürich (2012)Google Scholar
  3. 3.
    Bunch, J.R., Nielsen, C.P., Sorensen, D.: Rank-one modification of the symmetric eigenproblem. Numerische Mathematik 31 (1978)Google Scholar
  4. 4.
    Callahan, E., Koenemann, J.: A comparative usability evaluation of user interfaces for online product catalog. In: Proceedings of the 2nd ACM Conference on Electronic Commerce (EC), pp. 197–206. ACM (2000)Google Scholar
  5. 5.
    Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press (2006)Google Scholar
  6. 6.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall/CRC (2000)Google Scholar
  7. 7.
    Dinuzzo, F., Schölkopf, B.: The representer theorem for Hilbert spaces: A necessary and sufficient condition. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS), pp. 189–196 (2012)Google Scholar
  8. 8.
    Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-level interaction with statistical models for visual analytics. In: IEEE VAST, pp. 121–130. IEEE (2011)Google Scholar
  9. 9.
    Forsythe, G.E., Golub, G.H.: On the Stationary Values of a Second-Degree Polynomial on the Unit Sphere. Journal of the Society for Industrial and Applied Mathematics 13(4), 1050–1068 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gander, W.: Least Squares with a Quadratic Constraint. Numerische Mathematik 36, 291–308 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gander, W., Golub, G., von Matt, U.: A constrained eigenvalue problem. Linear Algebra and its Applications 114-115, 815–839 (1989)Google Scholar
  12. 12.
    Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel View of the Dimensionality Reduction of Manifolds. In: Proceedings of the 21st International Conference on Machine Learning (2004)Google Scholar
  13. 13.
    Izenman, A.J.: Linear Discriminant Analysis. Springer (2008)Google Scholar
  14. 14.
    Jeong, D.H., Ziemkiewicz, C., Fisher, B.D., Ribarsky, W., Chang, R.: iPCA: An Interactive System for PCA-based Visual Analytics. Comput. Graph. Forum 28(3), 767–774 (2009)CrossRefGoogle Scholar
  15. 15.
    Jolliffe, I.T.: Principal Component Analysis. Springer (1986)Google Scholar
  16. 16.
    Leman, S., House, L., Maiti, D., Endert, A., North, C.: Visual to Parametric Interaction (V2PI). PLoS One 8, e50474 (2013)Google Scholar
  17. 17.
    Li, R.C.: Solving secular equations stably and efficiently (1993)Google Scholar
  18. 18.
    Paurat, D., Gärtner, T.: Invis: A tool for interactive visual data analysis. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 672–676. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Paurat, D., Oglic, D., Gärtner, T.: Supervised PCA for Interactive Data Analysis. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS) 2nd Workshop on Spectral Learning (2013)Google Scholar
  20. 20.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  21. 21.
    Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) COLT/EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    Shearer, C.: The CRISP-DM model: The new blueprint for data mining. Journal of Data Warehousing 5(4), 13–22 (2000)Google Scholar
  23. 23.
    Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  24. 24.
    Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, vol. 2, pp. 523–531 (1975)Google Scholar
  25. 25.
    Walder, C., Henao, R., Mørup, M., Hansen, L.K.: Semi-Supervised Kernel PCA. Computing Research Repository (CoRR) abs/1008.1398 (2010)Google Scholar
  26. 26.
    Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 988–995 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dino Oglic
    • 1
  • Daniel Paurat
    • 1
  • Thomas Gärtner
    • 1
    • 2
  1. 1.University of BonnBonnGermany
  2. 2.Fraunhofer IAISSankt AugustinGermany

Personalised recommendations