Skip to main content

Die Hitze in der Stadt verstehen – Wie sich die jahreszeitliche Temperaturdynamik von Städten aus dem All beobachten lässt

  • Chapter
  • First Online:
Globale Urbanisierung

Zusammenfassung

Bis zu 95 % der Todesopfer aus Naturkatastrophen sind auf Hitzewellen zurückzuführen. Städte sind außerordentlich betroffen, da sie sich besonders stark erwärmen und hier viele Menschen leben. Die Fernerkundung kann einen Beitrag zu ihrer thermischen Überwachung leisten. Mit Sensoren im Wellenlängenbereich des thermalen Infrarot (TIR) kann beispielsweise die Temperatur der Oberfläche gemessen werden. Neuere Methoden erlauben es mit zahlreichen Aufnahmen über längere Zeiträume genauere thermische Muster abzuleiten und die raumzeitliche Temperaturdynamik städtischer Oberflächen besser zu verstehen. In diesem Kapitel wird der Jahresgang der Oberflächentemperatur und ihrer Wärmeinsel für Städte auf fünf Kontinenten (San Fransisco, Hamburg, Windhoek, Mumbai und Canberra) untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.

    Article  Google Scholar 

  • Bechtel, B. (2012). Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes. Geoscience and Remote Sensing Letters, 9, 876–880.

    Article  Google Scholar 

  • Bechtel, B., & Daneke, C. (2012). Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1191–1202.

    Article  Google Scholar 

  • Bechtel, B., Zakšek, K., & Hoshyaripour, G. (2012). Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany. Remote Sensing, 4, 3184–3200.

    Article  Google Scholar 

  • Bechtel, B., Wiesner, S., & Zakšek, K. (2014). Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4129–4137.

    Article  Google Scholar 

  • Bechtel, B., Böhner, J., Zakšek, K., & Wiesner, S. (2013). Downscaling of diurnal land surface temperature cycles for urban heat island monitoring. Sao Paulo: Urban Remote Sensing Event (JURSE).

    Google Scholar 

  • Duan, S.-B., Li, Z.-L., Wang, N., Wu, H., & Tang, B.-H. (2012). Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sensing of Environment, 124, 15–25.

    Article  Google Scholar 

  • Fabrizi, R., Bonafoni, S., & Biondi, R. (2010). Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome. Remote Sensing, 2, 1400–1415.

    Article  Google Scholar 

  • Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.

    Article  Google Scholar 

  • Gamba, P., & Dell’Acqua, F. (2003). Increased accuracy multiband urban classification using a neuro-fuzzy classifier. International Journal of Remote Sensing, 24, 827–834.

    Article  Google Scholar 

  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126.

    Article  Google Scholar 

  • Göttsche, F. M., & Olesen, F. S. (2001). Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sensing of Environment, 76(3), 337–348.

    Article  Google Scholar 

  • Heldens, W. (2010): Use of airborne hyperspectral data and height information to support urban micro climate characterisation. Dissertation, Julius-Maximilians-Universität Würzburg, 202 S.

    Google Scholar 

  • Heldens, W., Taubenböck, H., Esch, T., Heiden, U., & Wurm, M. (2013). Analysis of thermal patterns in relation to urban structure types – a case study for the city of Munich. In C. Künzer, & S. Dech (Hrsg.), Thermal Infrared Remote Sensing (S. 475–494).

    Chapter  Google Scholar 

  • Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2010). Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sensing of Environment, 114, 1480–1493.

    Article  Google Scholar 

  • LPDAAC, Land Surface Temperature and Emissivity Daily L3 Global 1 km Grid SIN. https://lpdaac.usgs.gov/products/modis_products_table/mod11a1 Zugriff: 14.11.2014

  • Nichol, J. (2005). Remote sensing of urban heat islands by day and night. Photogrammetric Engineering and Remote Sensing, 71, 613–622.

    Article  Google Scholar 

  • Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment, 7, 769–779.

    Article  Google Scholar 

  • Oke, T. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24.

    Google Scholar 

  • Petropoulos, G., Carlson, T., Wooster, M., & Islam, S. (2009). A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Progress in Physical Geography, 33, 224–250.

    Article  Google Scholar 

  • Poumadere, M., Mays, C., Le Mer, S., & Blong, R. (2005). The 2003 heat wave in France: dangerous climate change here and now. Risk Analysis, 25, 1483–1494.

    Article  Google Scholar 

  • Roessner, S., Segl, K., Heiden, U., & Kaufmann, H. (2001). Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, 1525–1532.

    Article  Google Scholar 

  • Stewart, I. D., & Oke, T. R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93, 1879–1900.

    Article  Google Scholar 

  • Taubenböck, H., Esch, T., Wurm, M., Roth, A., & Dech, S. (2010). Object-based feature extraction using high spatial resolution satellite data of urban areas. Journal of Spatial Science, 55, 117.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Wan, Z. (2008). New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sensing of Environment, 112(1), 59–74.

    Article  Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344.

    Article  Google Scholar 

  • Weng, Q., & Fu, P. (2014). Modelling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sensing of Environment, 140, 267–278.

    Article  Google Scholar 

  • Wurm, M., Taubenböck, H., Roth, A., & Dech, S. (2009). Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden JURSE 200, Beijing, Chin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechtel, B. (2015). Die Hitze in der Stadt verstehen – Wie sich die jahreszeitliche Temperaturdynamik von Städten aus dem All beobachten lässt. In: Taubenböck, H., Wurm, M., Esch, T., Dech, S. (eds) Globale Urbanisierung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44841-0_21

Download citation

Publish with us

Policies and ethics