Skip to main content

Side Effects of Radiation Treatment

  • Chapter
  • First Online:
Radiation Treatment and Radiation Reactions in Dermatology
  • 1305 Accesses

Abstract

Depending on the total dose, the following acute changes may occur during radiotherapy or up to 90 days after its initiation: dry skin, epilation, erythema, moist desquamation, erosion, or ulceration. The more severe reactions moist desquamation, erosion, and ulceration have not to be expected after total doses below 45 Gy, unless they are caused by the tumor itself. Typical changes may appear in irradiated fields months to years after superficial radiotherapy: depigmentation, often associated with atrophy, telangiectases, hyperpigmentation, depressed scars, erythema, induration, and keratoses. These changes have been termed chronic radiodermatitis or roentgenoderm. The threshold dose for late visible radiation sequelae is lower than the dose usually required for the treatment of malignant tumors, with the exception of some malignant lymphomas. Permanent hair loss in the irradiated field has to be expected after treatment of cutaneous malignant tumors. Visible radiation sequelae may have cosmetic importance. Patients usually accept the cosmetic outcome if they have been carefully informed about side effects prior to treatment. Pruritus or burning may occur in irradiated areas but in most cases only temporarily. Irradiation around the eye can cause epiphora which usually does not permanently trouble the patient. After radiotherapy of lip carcinomas, the occlusion of the mouth may be insufficient with the consequence that fluid runs out of the mouth when eating or drinking. This may be caused by the destructive growth of the tumor before radiotherapy and has been more frequently observed after surgery compared to radiotherapy. Typical microscopic changes of chronic radiodermatitis are atrophy of the epidermis and sweat glands, absence of hair follicles and sebaceous glands, dilation of superficial blood vessels, fibrosis, elastosis and giant multinucleate fibrocytes. Radiogenic ulcers are caused by an insufficient supply of nutrients and oxygen in the irradiated field. In most cases, they can be cured by ointments and moist compresses. The connective tissue changes found in chronic radiodermatitis are caused by overproduction and deposition of extracellular matrix that is regulated by cytokines, particularly tumor growth factor β-1 (TGF-β1). To compare the therapeutic results from different studies and therapeutic modalities, uniform criteria have to be used for the assessment of acute and late effects. The Radiation Therapy Oncology Group (RTOG) has, in collaboration with the European Organization for Research and Treatment of Cancer (EORTC), developed the LENT (late effects normal tissue) SOMA scoring system which can be used to document subjective, objective, management, and analytic information for 38 anatomic sites including skin and subcutaneous tissue. Irradiation of children for ringworm of the scalp (tinea capitis) has significantly increased the risk to develop a basal cell carcinoma after relatively long latency periods. Ultraviolet light is a cofactor for the development of these basal cell carcinomas. The risk of radiation induced skin cancer increases with time from exposure. In most studies, the skin cancer risk was not significantly elevated after exposure of adults to small radiation doses. We assume that the skin cancer risk after radiotherapy for a malignant cutaneous neoplasm is low because (1) radiation fields are small; (2) high doses applied in a short time interval kill cells, and dead cells cannot become neoplastic; and (3) the life expectancy of the usually relatively old patients who are treated for a cutaneous malignancy is in most cases shorter than the latency period for the induction of a malignant tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nosko L (1953) Zur Entstehung und Klinik des Röntgenulcus. Z Haut Geschl krankh 14:251–255

    CAS  Google Scholar 

  2. Dörr W (2006) Skin and other reactions to radiotherapy- clinical presentation and radiobiology of skin reactions. In: Sternemann M, Wiegel T, Geilen CC, Orfanos CE, Hinkelbein W (eds) Controversies in the treatment of skin neoplasias, vol 39, Front Radiat Ther Oncol. Karger, Basel, pp 96–101

    Google Scholar 

  3. Seegenschmiedt H (2006) Management of skin and related reactions to radiotherapy. In: Sternemann M, Wiegel T, Geilen CC, Orfanos CE, Hinkelbein W (eds) Controversies in the treatment of skin neoplasias, vol 39, Front Radiat Ther Oncol. Karger, Basel, pp 102–119

    Google Scholar 

  4. Archambeau JO, Pezner R, Wasserman T (1995) Pathophysiology of irradiated skin and breast. Int J Radiat Biol Phys 31:1171–1185

    Article  CAS  Google Scholar 

  5. Schulte K-W, Lippold A, Auras C et al (2005) Soft x-ray therapy for cutaneous basal and squamous cell carcinomas. J Am Acad Dermatol 53:993–1001

    Article  PubMed  Google Scholar 

  6. Turesson I, Notter G (1984) The influence of fraction size in radiotherapy on the late normal tissue reaction- II: comparison of the effects of daily and twice-a-week fractionation on human skin. Int J Radiat Oncol Biol Phys 10:599–606

    Article  CAS  PubMed  Google Scholar 

  7. Rupprecht R, Lippold A, Auras C et al (2007) Late side effects with cosmetic relevance following soft x-ray therapy of cutaneous neoplasias. J Eur Acad Dermatol Venereol 21:178–185

    Article  CAS  PubMed  Google Scholar 

  8. Goldschmidt H, Breneman JC, Breneman DL (1994) Ionizing radiation therapy in dermatology. J Am Acad Dermatol 30:157–182

    Article  CAS  PubMed  Google Scholar 

  9. Goldschmidt H, Sherwin WK (1980) Reactions to ionizing radiation. J Am Acad Dermatol 3:551–579

    Article  CAS  PubMed  Google Scholar 

  10. Panizzon R (1987) Wie reagiert die Haut auf ionisierende Strahlen? Swiss Med 9:7–14

    Google Scholar 

  11. Lapidus SM (1976) The tricho system: hypertrichosis, radiation, and cancer. J Surg Oncol 8:267–274

    Article  CAS  PubMed  Google Scholar 

  12. Sulzberger MB, Baer RL, Borota A (1952) Do roentgen-ray treatments as given by skin specialists produce cancers or other sequelae. Arch Dermatol Syphil 65:639–655

    Article  CAS  Google Scholar 

  13. Locke J, Karimpour S, Young G et al (2001) Radiotherapy of epithelial skin cancer. Int J Radiat Oncol Biol Phys 51:748–755

    Article  CAS  PubMed  Google Scholar 

  14. Caccialanza M, Piccinno R, Beretta M, Gnecchi L (1999) Results and side effects of dermatologic radiotherapy: a retrospective study of irradiated cutaneous epithelial neoplasms. J Am Acad Dermatol 41:589–594

    CAS  PubMed  Google Scholar 

  15. Caccialanza M, Piccinno R, Grammatica A (2001) Radiotherapy of recurrent basal and squamous cell skin carcinomas: a study of 249 re-treated carcinomas in 229 patients. Eur J Dermatol 11:25–28

    CAS  PubMed  Google Scholar 

  16. Caccialanza M, Piccinno R, Moretti D et al (2003) Radiotherapy of carcinomas of the skin overlying the cartilage of the nose: results in 450 lesions. Eur J Dermatol 13:462–465

    PubMed  Google Scholar 

  17. Caccialanza M, Piccinno R, Percivalle S et al (2009) Radiotherapy of carcinomas of the skin overlying the cartilage of the nose: our experience in 671 lesions. J Eur Acad Dermatol Venereol 23:1044–1049

    Article  CAS  PubMed  Google Scholar 

  18. Childers BJ, Goldwyn RM, Ramos D et al (1994) Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg 93:1169–1173

    Article  CAS  PubMed  Google Scholar 

  19. Churchill-Davidson I, Johnson E (1954) Rodent ulcers: an analysis of 711 lesions treated by radiotherapy. Br Med J 1:1465–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lovett RD, Perez CA, Shapiro SJ et al (1990) External irradiation of epithelial skin cancer. Int J Radiat Oncol Biol Phys 19:235–242

    Article  CAS  PubMed  Google Scholar 

  21. Mazeron JJ, Chassagne D, Crook J et al (1989) Radiation therapy of carcinomas of the skin of nose and nasal vestibule: a report of 1676 cases by the Groupe Europeen de Curiethérapie. Radiother Oncol 13:165–173

    Article  Google Scholar 

  22. Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46:529–537

    Article  CAS  PubMed  Google Scholar 

  23. Avril MF, Auperin A, Margulis A et al (1997) Basal cell carcinoma of the face: surgery or radiotherapy? Results of a randomized study. Br J Cancer 76:100–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Petit JY, Avril MF, Margulis A et al (2000) Evaluation of cosmetic results of a randomized trial comparing surgery and radiotherapy in the treatment of basal cell carcinoma of the face. Plast Reconstr Surg 105:2544–2551

    Article  CAS  PubMed  Google Scholar 

  25. Huynh NT, Veness MJ (2002) Basal cell carcinoma of the lip treated with radiotherapy. Australas J Dermatol 43:15–19

    Article  PubMed  Google Scholar 

  26. Avila J, Bosch A, Aristizabal S et al (1977) Carcinoma of the pinna. Cancer 40:2891–2895

    Article  CAS  PubMed  Google Scholar 

  27. Cooper JS (1988) Patients’ perceptions of their cosmetic appearance more than ten years after radiotherapy for basal cell carcinoma. Radiat Med 6:285–288

    CAS  PubMed  Google Scholar 

  28. Fitzpatrick PJ, Thompson GA, Easterbrook WM et al (1984) Basal and squamous cell carcinoma of the eyelids and their treatment by radiotherapy. Int J Radiat Oncol Biol Phys 10:449–454

    Article  CAS  PubMed  Google Scholar 

  29. Seegenschmiedt MH, Oberste-Beulmann S, Lang E et al (2001) Strahlentherapie des Basalzellkarzinoms. Lokale Kontrolle und kosmetisches Ergebnis. Strahlenther Onkol 177:240–246

    Article  CAS  PubMed  Google Scholar 

  30. Tombolini V, Bonanni A, Valeriani M et al (1998) Brachytherapy for squamous cell carcinoma of the lip. The experience of the institute of radiology of the university of Rome “La Sapienza”. Tumori 84:478–482

    CAS  PubMed  Google Scholar 

  31. Wilder RB, Shimm DS, Kittelson JM et al (1991) Recurrent basal cell carcinoma treated with radiation therapy. Arch Dermatol 127:1668–1672

    Article  CAS  PubMed  Google Scholar 

  32. Schulte K-W, Auras C, Bramkamp G et al (2008) Late adverse effects after soft X-ray therapy of cutaneous malignancies: pruritus, burning epiphora and insufficient occlusion of the mouth. J Eur Acad Dermatol Venereol 22:555–560

    Article  PubMed  Google Scholar 

  33. Lippert HD, Wiskemann A (1978) Röntgenbestrahlung von Basaliomen im Lidbereich. Bestrahlungstechnik und Ergebnisse Hautarzt 29:209–212

    CAS  Google Scholar 

  34. Lederman M (1976) Radiation treatment of cancer of the eyelids. Br J Ophthalmol 60:794–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schlienger P, Brunin F, Desjardins L et al (1996) External radiotherapy for carcinoma of the eyelid: report of 850 cases treated. Int J Radiat Oncol Biol Phys 34:277–287

    Article  CAS  PubMed  Google Scholar 

  36. De Smet MD, Buffam FV, Fairey et al (1990) Prevention of radiation-induced stenosis of the nasolacrimal duct. Can J Ophthalmol 25:145–147

    PubMed  Google Scholar 

  37. Lovato AA, Char DH, Castro JR, Kroll et al (1989) The effect of silicone nasolacrimal intubation on epiphora after helium ion irradiation of uveal melanomas. Am J Ophthalmol 108:431–434

    Article  CAS  PubMed  Google Scholar 

  38. Stranc MF, Fogel M, Dische S (1987) Comparison of lip function: surgery vs radiotherapy. Br J Plast Surg 40:598–604

    Article  CAS  PubMed  Google Scholar 

  39. Cerezo L, Liu FF, Tsang R et al (1993) Squamous cell carcinoma of the lip: analysis of the Princess Margaret Hospital experience. Radiother Oncol 28:142–147

    Article  CAS  PubMed  Google Scholar 

  40. Petrovich Z, Kuisk H, Tobochnik N, Hittle RE, Barton R, Jose L (1979) Carcinoma of the lip. Arch Otolaryngol 105:187–191

    Article  CAS  PubMed  Google Scholar 

  41. Fajardo LF, Berthrong M (1981) Radiation injury in surgical pathology. Part III. Salivary glands, pancreas and skin. Am J Surg Pathol 5:279–296

    Article  CAS  PubMed  Google Scholar 

  42. Ackerman AB, Chongchitnant N, Sanchez J et al (1997) Radiation dermatitis and panniculitis. In: Ackerman AB, Chongchitnant N, Sanchez J, Guo Y, Bennin B, Reichel M, Randall MB (eds) Histologic diagnosis of inflammatory skin diseases. An algorithmic method based on pattern analysis, 2nd edn. Williams and Wilkins, Baltimore, pp 678–681

    Google Scholar 

  43. Drepper H, Ehring F, Vojtech D (1971) Die Radionekrose der Haut. Eine Aufgabe für ärztliche Gruppenarbeit. Med Welt 22:155–162

    Google Scholar 

  44. Heckmann M (1996) Strahlenwirkung auf mikrovaskuläre Endothelzellen. In: Peter RU, Plewig G (eds) Strahlentherapie dermatologischer Erkrankungen. Blackwell, Berlin, pp 45–49

    Google Scholar 

  45. Landthaler M, Hagspiel H-J, Braun-Falco O (1995) Late irradiation damage to the skin caused by soft X-ray radiation therapy of cutaneous tumors. Arch Dermatol 131:182–186

    Article  CAS  PubMed  Google Scholar 

  46. Vaillant L, Goga D, Bougnoux A, Huttenberger B et al (1990) Skin carcinoma of the face: surgery or radiotherapy? Rev Stomatol Chir Maxillofac 91:357–361

    CAS  PubMed  Google Scholar 

  47. Silverman MK, Kopf AW, Gladstein AH et al (1992) Recurrence rates of treated basal cell carcinomas. Part 4: X-ray therapy. J Dermatol Surg Oncol 18:549–554

    Article  CAS  PubMed  Google Scholar 

  48. Podd TJ (1992) Treatment of lower limb basal cell and squamous cell carcinomas with radiotherapy. Clin Oncol (R Coll Radiol) 4:44–45

    Article  CAS  Google Scholar 

  49. Traenkle HL, Dattatreya M (1960) Further observations on late radiation necrosis following therapy of skin cancer. Arch Dermatol 81:908–913

    Article  CAS  PubMed  Google Scholar 

  50. Moulder JE, Cohen EP (2007) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 17:141–148

    Article  PubMed  Google Scholar 

  51. Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17:81–88

    Article  PubMed  Google Scholar 

  52. Panizzon RG, Hanson WR, Schwartz DE et al (1988) Ionizing radiation induces early, sustained increases in collagen biosynthesis: a 48-week study in mouse skin and skin fibroblast cultures. Radiat Res 116:145–156

    Article  CAS  PubMed  Google Scholar 

  53. Martin M, Lefaix J-L, Delanian S (2000) TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    Article  CAS  PubMed  Google Scholar 

  54. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    Article  CAS  PubMed  Google Scholar 

  55. Flanders KC, Sullivan CD, Fuji M et al (2002) Mice lacking Smad3 are protected against cutaneous injury by ionising radiation. Am J Pathol 160:1057–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Assoian RK, Komoriya A, Meyers CA et al (1983) Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 258:7155–7160

    CAS  PubMed  Google Scholar 

  57. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Path 85:47–64

    Article  CAS  Google Scholar 

  58. Attisano L, Wrana JL (1998) Mads and Smads in TGFβ signalling. Curr Opin Cell Biol 10:188–194

    Article  CAS  PubMed  Google Scholar 

  59. Milliat F, Francois A, Isoir M et al (2006) Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation. Implication in radiation induced vascular damages. Am J Pathol 169:1484–1495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Edlund S, Landstrom M, Heldin CH et al (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13:902–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hay E, Lemonnier J, Fromigue O et al (2001) Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 276:29028–29036

    Article  CAS  PubMed  Google Scholar 

  62. Haydont V, Mathé D, Bourgier C et al (2005) Induction of CTGF by TGF-β1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives. Radiother Oncol 76:219–225

    Article  CAS  PubMed  Google Scholar 

  63. Haydont V, Riser BL, Aigueperse J et al (2008) Specific signals in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-{beta}1. Am J Physiol Cell Physiol 294:1332–1341

    Article  Google Scholar 

  64. Holmes A, Abraham DJ, Sa S et al (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 276:10594–10601

    Article  CAS  PubMed  Google Scholar 

  65. Lafont J, Laurent M, Thibout H et al (2002) The expression of NovH in adrenocortical cells is downregulated by TGF(beta)1 through C-Jun in a Smad-independent manner. J Biol Chem 277:41220–41229

    Article  CAS  PubMed  Google Scholar 

  66. Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21:3749–3759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. LENT SOMA scales for all anatomic sites (1995) Int J Radiat Oncol Biol Phys 31:1049–1091

    Google Scholar 

  68. Pavy J-J, Denekamp J, Letschert J et al (1995) Late effects toxicity scoring: the SOMA scale. Int J Radiat Oncol Biol Phys 31:1043–1047

    Article  CAS  PubMed  Google Scholar 

  69. Rubin P, Constine LS, Fajardo LF et al (1995) Overview: late effects of normal tissues (LENT) scoring system. Int J Radiat Oncol Biol Phys 31:1041–1042

    Article  CAS  PubMed  Google Scholar 

  70. Scott CB, Pajak TF (1995) LENT: a good beginning but…. Int J Radiat Oncol Biol Phys 31:1347–1348

    Article  CAS  PubMed  Google Scholar 

  71. Seegenschmiedt MH (1998) Interdisciplinary documentation of treatment side effects in oncology. Present status and perspectives. Strahlenther Onkol 174(Suppl 3):25–29

    PubMed  Google Scholar 

  72. Trotti A (2002) The evolution and application of toxicity criteria. Semin Radiat Oncol 12(Suppl 1):1–3

    Article  PubMed  Google Scholar 

  73. Hoven-Gondrie ML, Thijssens KM, Geertzen JH et al (2008) Isolated limb perfusion and external beam radiotherapy for soft tissue sarcomas of the extremity: long-term effects on normal tissue according to the LENT-SOMA scoring system. Ann Surg Oncol 15:1502–1510

    Article  PubMed Central  PubMed  Google Scholar 

  74. Toledano A, Garaud P, Serin D et al (2006) Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long term results of the ARCOSEIN multicenter randomised study. Int J Radiat Oncol Biol Phys 65:324–332

    Article  CAS  PubMed  Google Scholar 

  75. Ron E (2003) Cancer risks from medical radiation. Health Phys 85:47–59

    Article  CAS  PubMed  Google Scholar 

  76. Ron E, Baruch M, Boice JD et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    Article  CAS  PubMed  Google Scholar 

  77. Ron E, Modan B, Preston D et al (1991) Radiation-induced skin carcinomas of the head and neck. Radiat Res 125:318–325

    Article  CAS  PubMed  Google Scholar 

  78. Sadetzki S, Chetrit A, Lubina A et al (2006) Risk of thyroid cancer after childhood exposure to ionizing radiation for tinea capitis. J Clin Endocrinol Metab 91:4798–4804

    Article  CAS  PubMed  Google Scholar 

  79. Shore RE, Moseson M, Xue X et al (2002) Skin cancer after x-ray treatment for scalp ringworm. Radiat Res 157:410–418

    Article  CAS  PubMed  Google Scholar 

  80. Shore RE, Moseson M, Harley N et al (2003) Tumors and other diseases following childhood X-ray treatment for ringworm of the scalp (tinea capitis). Health Phys 2003:404–408

    Article  Google Scholar 

  81. Modan B, Alfandary E, Shapiro D et al (1993) Factors affecting the development of skin cancer after scalp irradiation. Radiat Res 135:125–128

    Article  CAS  PubMed  Google Scholar 

  82. Boice JD Jr, Day NE, Andersen A et al (1985) Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 74:955–975

    PubMed  Google Scholar 

  83. International Commission of Radiation Protection (1992) Radiation induced skin cancer in humans. Ann ICRP 22:56–83

    Google Scholar 

  84. Lindelöf B, Eklund G (1986) Incidence of malignant skin tumors in 14140 patients after grenz-ray treatment for benign skin disorders. Arch Dermatol 122:1391–1395

    Article  PubMed  Google Scholar 

  85. Shore RE (1990) Overview of radiation-induced skin cancer in humans. Int J Radiat Biol 57:809–827

    Article  CAS  PubMed  Google Scholar 

  86. Shore R, Hildreth N, Woodard E et al (1986) Breast cancer among women given X-ray therapy for acute postpartum mastitis. J Natl Cancer Inst 77:689–696

    CAS  PubMed  Google Scholar 

  87. Lichter MD, Karagas MR, Mott LA et al (2000) Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. Arch Dermatol 136:1007–1011

    Article  CAS  PubMed  Google Scholar 

  88. Karagas MR, McDonald JA, Greenberg ER et al (1996) Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. J Natl Cancer Inst 88:1848–1853

    Article  CAS  PubMed  Google Scholar 

  89. Epstein E (2001) Genetic determinants of basal cell carcinoma risk. Med Pediatr Oncol 36:555–558

    Article  PubMed  Google Scholar 

  90. Goldschmidt H, Gorson RO, Lassen M (1983) Dermatologic radiotherapy and thyroid cancer. Dose measurements and risk quantification. Arch Dermatol 119:383–390

    Article  CAS  PubMed  Google Scholar 

  91. Trott K-R, Kamprad F (2006) Estimation of cancer risks from radiotherapy of benign diseases. Strahlenther Onkol 182:431–436

    Article  PubMed  Google Scholar 

  92. Goldschmidt H (1986) Dermatologic radiotherapy. The risk-benefit ratio. Arch Dermatol 122:1385–1388

    Article  CAS  PubMed  Google Scholar 

  93. Allison JR Jr (1984) Radiation-induced basal-cell carcinoma. J Dermatol Surg Oncol 10:200–203

    Article  PubMed  Google Scholar 

  94. Davis MM, Hanke W, Zollinger TW et al (1989) Skin cancer in patients with chronic radiation dermatitis. J Am Acad Dermatol 20:608–616

    Article  CAS  PubMed  Google Scholar 

  95. Martin H, Strong E, Spiro RH (1970) Radiation-induced skin cancer of the head and neck. Cancer 25:61–71

    Article  CAS  PubMed  Google Scholar 

  96. Van Vloten WA, Hermans J, van Daal WAJ (1987) Radiation-induced skin cancer and radiodermatitis of the head and neck. Cancer 59:411–414

    Article  PubMed  Google Scholar 

  97. Rowell NR (1973) A follow-up study of superficial radiotherapy for benign dermatoses: recommendations for the use of X-rays in dermatology. Br J Dermatol 88:583–590

    Article  CAS  PubMed  Google Scholar 

  98. Fry RJM (1990) Radiation protection guidelines for the skin. Int J Radiat Biol 57:829–839

    Article  CAS  PubMed  Google Scholar 

  99. Ehring F, Honda M (1967) Das Basalzellkarzinom auf röntgenbelasteter Haut. Strahlentherapie 133:198–207

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suter, L. (2015). Side Effects of Radiation Treatment. In: Panizzon, R., Seegenschmiedt, M. (eds) Radiation Treatment and Radiation Reactions in Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44826-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44826-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44825-0

  • Online ISBN: 978-3-662-44826-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics