Size Effects on Semiconductor Nanoparticles

  • Rolf Koole
  • Esther Groeneveld
  • Daniel Vanmaekelbergh
  • Andries Meijerink
  • Celso de Mello Donegá
Chapter

Abstract

This chapter addresses the fundamental concepts needed to understand the impact of size reduction on the electronic structure and optoelectronic properties of semiconductor nanostructures, with emphasis on quantum confinement effects. This effect is explained by two different approaches: the “top-down” and the “bottom-up”. Subsequently, a brief description of the optical properties of semiconductor nanocrystals is presented. This is followed by sections discussing the essential characteristics of nanocrystals consisting of two (or more) different semiconductors joined together by heterointerfaces (i.e., heteronanocrystals). Moreover, the essential differences between the impact of size reduction on semiconductors in comparison to metals and insulators is discussed. The chapter ends by briefly discussing the potential applications of semiconductor nanoparticles.

References

  1. 1.
    Brynjolfsson, E., McAfee, A.: Winning the race with ever-smarter machines. MIT Sloan Manage. Rev. 53, 53 (2012)Google Scholar
  2. 2.
    Donega, C.D.M.: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011)CrossRefGoogle Scholar
  3. 3.
    Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)CrossRefGoogle Scholar
  4. 4.
    Rossetti, R., Brus, L.: Electron-hole recombination emission as a probe of surface-chemistry in aqueous CdS colloids. J. Phys. Chem. 86, 4470–4472 (1982)CrossRefGoogle Scholar
  5. 5.
    Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Klimov, V.I.: Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007)CrossRefGoogle Scholar
  7. 7.
    Efros, A.L., Rosen, M.: The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000)CrossRefGoogle Scholar
  8. 8.
    Lo, S.S., Mirkovic, T., Chuang, C., Burda, C., Scholes, G.D.: Emergent properties resulting from Type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23, 180–197 (2011)CrossRefGoogle Scholar
  9. 9.
    Kambhampati, P.: Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011)CrossRefGoogle Scholar
  10. 10.
    Henderson, B., Imbusch, G.F.: Optical Spectroscopy of Inorganic Solids. Clarendon Press, Oxford (1989)Google Scholar
  11. 11.
    Bhattacharya, P., Ghosh, S., Stiff-Roberts, A.D.: Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 34, 1–40 (2004)CrossRefGoogle Scholar
  12. 12.
    Elzerman, J.M., Hanson, R., van Beveren, L.H.W., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)CrossRefGoogle Scholar
  13. 13.
    Tian, B., Kempa, T.J., Lieber, C.M.: Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)CrossRefGoogle Scholar
  14. 14.
    Hochbaun, A.I., Yang, P.: Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010)CrossRefGoogle Scholar
  15. 15.
    Hocevar, M., Immink, G., Verheijen, M., Akopian, N., Zwiller, V., Kouwenhoven, L., Bakkers, E.: Growth and optical properties of axial hybrid III-V/silicon nanowires. Nature Commun. 3, 1266 (2012)CrossRefGoogle Scholar
  16. 16.
    Bawendi, M.G., Steigerwald, M.L., Brus, L.E.: The quantum-mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 41, 477–496 (1990)CrossRefGoogle Scholar
  17. 17.
    Delerue, C., Lannoo, M.: Nanostructures: Theory and Modelling. Springer, Berlin (2004)CrossRefGoogle Scholar
  18. 18.
    An, J.M., Franceschetti, A., Dudiy, S.V., Zunger, A.: The peculiar electronic structure of PbSe quantum dots. Nano Lett. 6, 2728–2735 (2006)CrossRefGoogle Scholar
  19. 19.
    Koole, R.: Fundamentals and applications of semiconductor nanocrystals Ph.D. Thesis, Utrecht University, Utrecht (2008)Google Scholar
  20. 20.
    Wright, J.C.: Chemistry 623 Notes-Experimental Spectroscopy. Dept. of Chemistry, University of Wisconsin, pp. 47–69 (1990)Google Scholar
  21. 21.
    Lodahl, P., van Driel, A.F., Nikolaev, I.S., Irman, A., Overgaag, K., Vanmaekelbergh, D., Vos, W.L.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004)CrossRefGoogle Scholar
  22. 22.
    Rogach, A.L., Klar, T.A., Lupton, J.M., Meijerink, A., Feldmann, J.: Energy transfer with semiconductor nanocrystals. J. Mater. Chem. 19, 1208–1221 (2009)CrossRefGoogle Scholar
  23. 23.
    Förster, T.: Energiewanderung und Fluoreszenz. Naturwissenshaften 33, 166–175 (1946)CrossRefGoogle Scholar
  24. 24.
    Reiss, P., Protière, M., Li, L.: Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)CrossRefGoogle Scholar
  25. 25.
    Pandey, A., Guyot-Sionnest, P.: Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. J. Chem. Phys. 127, 104710 (2007)CrossRefGoogle Scholar
  26. 26.
    Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D., Klimov, V.I.: Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)CrossRefGoogle Scholar
  27. 27.
    Donegá, C.D.M.: Formation of nanoscale spatially indirect excitons: evolution of the type-II optical character of CdTe/CdSe heteronanocrystals. Phys. Rev. B 81, 165303 (2010)CrossRefGoogle Scholar
  28. 28.
    Grodzińska, D., Evers, W.H., Dorland, R., van Rijssel, J., van Huis, M.A., Meijerink, A., de Mello Donegá, C., Vanmaekelbergh, D.: Two-Fold emission from the S-Shell of PbSe/CdSe core/shell quantum dots. Small 7, 3493–3501 (2011)Google Scholar
  29. 29.
    Klimov, V.I., Ivanov, S.A., Nanda, J., Achermann, M., Bezel, I., McGuire, J.A., Piryatinski, A.: Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007)CrossRefGoogle Scholar
  30. 30.
    Pandey, A., Guyot-Sionnest, P.: Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008)CrossRefGoogle Scholar
  31. 31.
    He, J., Lo, S.S., Kim, J., Scholes, G.D.: Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures. Nano Lett. 8, 4007–4013 (2008)CrossRefGoogle Scholar
  32. 32.
    Kim, S., Fisher, B., Eisler, H., Bawendi, M.: Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003)CrossRefGoogle Scholar
  33. 33.
    Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulovic, V.: Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013)CrossRefGoogle Scholar
  34. 34.
    Bimberg, D., Pohl, U.W.: Quantum dots: promises and accomplishments. Mater. Today 14, 388–397 (2011)CrossRefGoogle Scholar
  35. 35.
    Garcıa-Santamarıa, F., Chen, Y., Vela, J., Schaller, R.D., Hollingsworth, J.A., Klimov, V.I.: Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009)CrossRefGoogle Scholar
  36. 36.
    Konstantatos, G., Sargent, E.H.: Colloidal quantum dot optoelectronics and photovoltaics. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  37. 37.
    Doane, T.L., Burda, C.: The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)CrossRefGoogle Scholar
  38. 38.
    Lunt, R.R., Osedach, T.P., Brown, P.R., Rowehl, J.A., Bulovic, V.: Practical roadmap and limits to nanostructured photovoltaics. Adv. Mater. 23, 5712–5727 (2011)CrossRefGoogle Scholar
  39. 39.
    Kamat, P.V.: Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2012)CrossRefGoogle Scholar
  40. 40.
    Kramer, I.J., Sargent, E.H.: Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)CrossRefGoogle Scholar
  41. 41.
    Nozik, A.J., Conibeer, G., Beard, M.C.: Advanced concepts in photovoltaics. Royal Society of Chemistry, Oxford (2014)CrossRefGoogle Scholar
  42. 42.
    Krumer, Z., Pera, S.J., van Dijk-Moes, R.J.A., Zhao, Y., de Brouwer, A.F.P., Groeneveld, E., van Sark, W.G.J.H.M., Schropp, R. E.I., Donega, C.D.M.: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013)Google Scholar
  43. 43.
    Fan, W., Zhang, Q., Wang, Y.: Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 15, 2632–2649 (2013)CrossRefGoogle Scholar
  44. 44.
    O’Connor, T., Panov, M.S., Mereshchenko, A., Tarnovsky, A.N., Lorek, R., Perera, D., Diederich, G., Lambright, S., Moroz, P., Zamkov, M.: The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. ACS Nano 6, 8156–8165 (2012)CrossRefGoogle Scholar
  45. 45.
    Groeneveld, E.: Synthesis and optical spectroscopy of (hetero)-nanocrystals. Ph.D. Thesis, Utrecht University, Utrecht (2012)Google Scholar
  46. 46.
    Koole, R., Allan, G., Delerue, C., Meijerink, A., Vanmaekelbergh, D., Houtepen, A.J.: Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone. Small 4, 127–133 (2008)CrossRefGoogle Scholar
  47. 47.
    Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rolf Koole
    • 1
  • Esther Groeneveld
    • 1
  • Daniel Vanmaekelbergh
    • 1
  • Andries Meijerink
    • 1
  • Celso de Mello Donegá
    • 1
  1. 1.Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations