Short Sequences of Improvement Moves Lead to Approximate Equilibria in Constraint Satisfaction Games

  • Ioannis Caragiannis
  • Angelo Fanelli
  • Nick Gravin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)

Abstract

We present an algorithm that computes approximate pure Nash equilibria in a broad class of constraint satisfaction games that generalize the well-known cut and party affiliation games. Our results improve previous ones by Bhalgat et al. (EC 10) in terms of the obtained approximation guarantee. More importantly, our algorithm identifies a polynomially-long sequence of improvement moves from any initial state to an approximate equilibrium in these games. The existence of such short sequences is an interesting structural property which, to the best of our knowledge, was not known before. Our techniques adapt and extend our previous work for congestion games (FOCS 11) but the current analysis is considerably simpler.

References

  1. 1.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 264–273 (2008)Google Scholar
  2. 2.
    Balcan, M.-F., Blum, A., Mansour, Y.: Circumventing the price of anarchy: leading dynamics to good behavior. SIAM Journal on Computing 42(1), 230–264 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium in cut, party affiliation, and satisfiability games. In: Proceedings of the 11th ACM Conference on Electronic Commerce (EC), pp. 73–82 (2010)Google Scholar
  4. 4.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash equilibria in congestion games. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 532–541 (2011)Google Scholar
  5. 5.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC), pp. 284–301 (2012)Google Scholar
  6. 6.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games and Economic Behavior 71(2), 315–327 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. Theoretical Computer Science 438, 13–27 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 604–612 (2004)Google Scholar
  9. 9.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum sut and satisfiability problems using semidefinite programming. Journal of the ACM 42(6), 1115–1145 (1995)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hastad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37, 79–100 (1988)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Klauck, H.: On the hardness of global and local approximation. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 88–99. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Krentel, M.W.: Structure in locally optimal solutions. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pp. 216–221 (1989)Google Scholar
  14. 14.
    Michiels, W., Aarts, E., Korst, J.: Theoretical aspects of local search. In: EATCS Monographs in Theoretical Computer Science. Springer (2007)Google Scholar
  15. 15.
    Orlin, J.B., Punnen, A.P., Schulz, A.S.: Approximate local search in combinatorial optimization. SIAM Journal on Computing 33, 1201–1214 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under uncertainty. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC), pp. 715–732 (2013)Google Scholar
  17. 17.
    Poljak, S.: Integer linear programs and local search for max-cut. SIAM Journal on Computing 24, 822–839 (1995)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM Journal on Computing 20, 56–87 (1991)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 355–364 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ioannis Caragiannis
    • 1
  • Angelo Fanelli
    • 2
  • Nick Gravin
    • 3
  1. 1.Computer Technology Institute “Diophantus” & Department of Computer Engineering and InformaticsUniversity of PatrasRionGreece
  2. 2.CNRS, Laboratoire CREM (UMR 6211)Université de Caen Basse-NormandieFrance
  3. 3.Microsoft ResearchCambridgeUSA

Personalised recommendations