Walrasian Equilibrium with Few Buyers

  • Reshef Meir
  • Moshe Tennenholtz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)

Abstract

We study the existence and the properties of Walrasian equilibrium (WEQ) in combinatorial auctions, under two natural classes of valuation functions. The first class is based on additive capacities or weights, and the second on the influence in a social network. While neither class holds the gross substitutes condition, we show that in both classes the existence of WEQ is guaranteed under certain restrictions, and in particular when there are only two competing buyers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Zwi, O., Lavi, R., Newman, I.: Ascending auctions and walrasian equilibrium. ArXiv preprint ArXiv:1301.1153 (2013)Google Scholar
  2. 2.
    Bikhchandani, S., Mamer, J.W.: Competitive equilibrium in an exchange economy with indivisibilities. Journal of Economic Theory 74(2), 385–413 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Blumrosen, L., Nisan, N.: Combinatorial auctions. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  4. 4.
    Boal, W.M., Ransom, M.R.: Monopsony in the labor market. Journal of Economic Literature 35(1), 86–112 (1997)Google Scholar
  5. 5.
    Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinatorial auctions with submodular bidders. In: SODA 2006, pp. 1064–1073. ACM (2006)Google Scholar
  6. 6.
    Farkas, I.J., Derényi, I., Barabási, A.-L., Vicsek, T.: Spectra of real-world graphs: Beyond the semicircle law. Physical Review E 64(2), 026704 (2001)Google Scholar
  7. 7.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–223 (2001)CrossRefGoogle Scholar
  8. 8.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87(1), 95–124 (1999)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    He, X., Kempe, D.: Price of anarchy for the n-player competitive cascade game with submodular activation functions. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 232–248. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50(6), 1483–1504 (1982)CrossRefMATHGoogle Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD 2003, pp. 137–146 (2003)Google Scholar
  12. 12.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)Google Scholar
  13. 13.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW 2008, pp. 695–704. ACM (2008)Google Scholar
  14. 14.
    Meir, R., Tennenholtz, M.: Equilibrium in Labor Markets with Few Firms. Tech. Rep. ArXiv: 1306.5855 [cs.GT]. ACM Comp. Research Repository (2013)Google Scholar
  15. 15.
    Sun, N., Yang, Z.: Equilibria and indivisibilities: Gross substitutes and complements. Econometrica 74(5), 1385–1402 (2006)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Reshef Meir
    • 1
  • Moshe Tennenholtz
    • 2
  1. 1.Harvard UniversityUSA
  2. 2.Microsoft Research and Technion-Israel Institute of TechnologyIsrael

Personalised recommendations