Network Cost-Sharing without Anonymity

  • Tim Roughgarden
  • Okke Schrijvers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)

Abstract

We consider network cost-sharing games with non-anonymous cost functions, where the cost of each edge is a submodular function of its users, and this cost is shared using the Shapley value. The goal of this paper is to identify well-motivated equilibrium refinements that admit good worst-case approximation bounds. Our primary results are tight bounds on the cost of strong Nash equilibria and potential function minimizers in network cost-sharing games with non-anonymous cost functions, parameterized by the set \(\mathcal{C}\) of allowable submodular cost functions. These two worst-case bounds coincide for every set \(\mathcal{C}\), and equal the summability parameter introduced in [31] to characterize efficiency loss in a family of cost-sharing mechanisms. Thus, a single parameter simultaneously governs the worst-case inefficiency of network cost-sharing games (in two incomparable senses) and cost-sharing mechanisms. This parameter is always at most the kth Harmonic number \(\mathcal{H}_k \approx \ln k\), where k is the number of players, and is constant for many function classes of interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM Journal on Computing 38(4), 1602–1623 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network design with selfish agents. Theory of Computing 4(1), 77–109 (2008)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in congestion games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 545–552. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Aumann, R.J.: Acceptable points in general cooperative n-person games. Contributions to the Theory of Games 4, 287–324 (1959)MathSciNetGoogle Scholar
  5. 5.
    Bachrach, Y., Syrgkanis, V., Tardos, E., Vojnovic, M.: Strong price of anarchy and coalitional dynamics. arXiv preprint arXiv:1307.2537 (2013)Google Scholar
  6. 6.
    Bilò, V., Bove, R.: Bounds on the price of stability of undirected network design games with three players. Journal of Interconnection Networks 12, 1–17 (2011)CrossRefGoogle Scholar
  7. 7.
    Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on the price of stability of undirected network design games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 90–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Blume, L.E.: The statistical mechanics of strategic interaction. Games and Economic Behavior 5(3), 387–424 (1993)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Charikar, M., Karloff, H., Mathieu, C., Naor, J., Saks, M.: Online multicast with egalitarian cost sharing. In: Parallelism in Algorithms and Architectures, pp. 70–76. ACM (2008)Google Scholar
  10. 10.
    Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. IEEE Selected Areas in Communications 25(6), 1193–1206 (2007)CrossRefGoogle Scholar
  11. 11.
    Chen, H., Roughgarden, T.: Network design with weighted players. Theory of Computing Systems 45(2), 302–324 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chen, H., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM Journal on Computing 39(5), 1799–1832 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chen, R., Chen, Y.: The potential of social identity for equilibrium selection. American Economic Review 101(6), 2562–2589 (2011)CrossRefGoogle Scholar
  14. 14.
    Chien, S., Sinclair, A.: Strong and pareto price of anarchy in congestion games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 279–291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., van Stee, R.: On the price of stability for undirected network design. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 86–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: ESA, pp. 59–70 (2005)Google Scholar
  17. 17.
    Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. Games and Economic Behavior 67(1), 51–68 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for designing undirected networks with fair cost allocations. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 608–618. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary to ensure pure Nash equilibria in cost sharing games. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 563–564. ACM (2013)Google Scholar
  20. 20.
    Hart, S., Mas-Colell, A.: Potential, value, and consistency. Econometrica: Journal of the Econometric Society, 589–614 (1989)Google Scholar
  21. 21.
    Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and economic behavior 21(1), 85–101 (1997)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Jackson, M.O.: Social and Economic Networks. Princeton (2008)Google Scholar
  23. 23.
    Jain, K., Mahdian, M.: Cost sharing. Algorithmic Game Theory, pp. 385–410 (2007)Google Scholar
  24. 24.
    Kalai, E., Samet, D.: On weighted Shapley values. International Journal of Game Theory 16(3), 205–222 (1987)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Kawase, Y., Makino, K.: Nash equilibria with minimum potential in undirected broadcast games. Theoretical Computer Science (2013)Google Scholar
  26. 26.
    Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 539–551. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Li, J.: An upper bound on the price of stability for undirected Shapley network design games. Information Processing Letters 109(15), 876–878 (2009)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–143 (1996)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Moreno, D., Wooders, J.: Coalition-proof equilibrium. Games and Economic Behavior 17(1), 80–112 (1996)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-proofness. Social Choice and Welfare 16(2), 279–320 (1999)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Roughgarden, T., Sundararajan, M.: Quantifying inefficiency in cost-sharing mechanisms. Journal of the ACM (JACM) 56(4), 23 (2009)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in monotone congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Shapley, L.S.: Additive and Non-Additive Set Functions. PhD thesis, Department of Mathematics, Princeton University (1953)Google Scholar
  34. 34.
    Slade, M.E.: What does an oligopoly maximize? Journal of Industrial Economics 42, 45–61 (1994)CrossRefGoogle Scholar
  35. 35.
    Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Tardos, É., Wexler, T.: Network formation games and the potential function method. In: Algorithmic Game Theory, ch. 19, pp. 487–516. Cambridge University Press (2007)Google Scholar
  37. 37.
    von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games. Mathematics of Operations Research 38(1), 184–208 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tim Roughgarden
    • 1
  • Okke Schrijvers
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations