Skip to main content

Amelogenesis Imperfecta: Current Understanding of Genotype-Phenotype

  • Chapter
  • First Online:
Planning and Care for Children and Adolescents with Dental Enamel Defects
  • 2413 Accesses

Abstract

There are nearly 100 hereditary conditions that affect enamel formation. Hereditary enamel conditions not associated with other tissue or developmental defects are traditionally referred to as amelogenesis imperfecta (AI). Enamel malformations involve either a deficiency in the amount of enamel (hypoplasia), a decrease in the mineral content or change in the composition of enamel (hypomineralization), or a combination of these two manifestations. The different amelogenesis imperfectas are challenging to diagnose and treat as they are extremely diverse in their clinical presentation and are genetically heterogeneous. There are multiple genes now known to cause AI and these different genes code for proteins that are critical for normal enamel formation. Ten genes with mutations known to cause AI have already been discovered, and the powerful new molecular technologies now available will help identify new genes that are associated with enamel defects. Understanding the etiology of hereditary conditions affecting enamel and how the enamel differs from normal (amount and/or composition) will allow clinicians to better advise their patients and select optimal treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suckling G, Pearce E. Developmental defects of enamel in a group of New Zealand children: their prevalence and some associated etiological factors. Community Dent Oral Epidemiol. 1984;12:177–84.

    Article  PubMed  Google Scholar 

  2. OMIM, Online Mendelian Inheritance in Man. Center for Medical Genetics, Johns Hopkins University and National Center for Biotechnology Information, National Library of Medicine, Baltimore; 2013.

    Google Scholar 

  3. Weinmann J, Svoboda J, Woods R. Hereditary disturbances of enamel formation and calcification. J Am Dent Assoc. 1945;32:397.

    Google Scholar 

  4. Witkop CJJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited, problems in classification. J Oral Pathol. 1989;17:547–53.

    Article  Google Scholar 

  5. Rowley R, Hill FJ, Winter GB. An investigation of the association between anterior open-bite and amelogenesis imperfecta. Am J Orthod. 1982;81:229–35.

    Article  PubMed  Google Scholar 

  6. Witkop CJ, Sauk JJ. Heritable defects of enamel. In: Stewart, Prescott G, editors. Oral facial genetics. St. Louis: R. C.V. Mosby Company; 1976. p. 151–226.

    Google Scholar 

  7. Witkop C, Kuhlamnn W, Sauk J. Autosomal recessive pigmented hypomaturation amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol. 1973;36(3):367–82.

    Article  PubMed  Google Scholar 

  8. Crawford P, Aldred M. Amelogenesis imperfecta: autosomal dominant hypomaturation-hypoplasia type with taurodontism. Br Dent J. 1988;164:71–3.

    Article  PubMed  Google Scholar 

  9. Witkop CJ. Hereditary defects in enamel and dentin. Acta Genet. 1957;7:236–9.

    PubMed  Google Scholar 

  10. Chosack A, et al. Amelogenesis imperfecta among Israeli Jews and the description of a new type of local hypoplastic autosomal recessive amelogenesis imperfecta. Oral Surg. 1979;47:148–56.

    Article  PubMed  Google Scholar 

  11. Backman B. Amelogenesis imperfecta-clinical manifestations in 51 families in a northern Swedish country. Scand J Dent Res. 1988;96:505–16.

    PubMed  Google Scholar 

  12. Backman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in a Northern Swedish County. Community Dent Oral Epidemiol. 1986;14:43–7.

    Article  PubMed  Google Scholar 

  13. Sundell S. Hereditary amelogenesis impertecta. An epidemiological, genetic and clinical study in a Swedish child population. Swed Dent J. 1986;31(Suppl):1–38.

    Google Scholar 

  14. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Congleton J, Burkes E. Amelogenesis imperfecta with taurodontism. Oral Surg. 1979;48:540–4.

    Article  PubMed  Google Scholar 

  16. Wright JT, et al. Analysis of the tricho-dento-osseous syndrome genotype and phenotype. Am J Med Genet. 1997;72:197–204.

    Article  PubMed  Google Scholar 

  17. Aldred MJ, Crawford PJM. Amelogenesis imperfecta-towards a new classification. Oral Dis. 1995;1:2–5.

    Article  PubMed  Google Scholar 

  18. Wright JT, et al. Amelogenesis imperfecta: genotype-phenotype studies in 71 families. Cells Tissues Organs. 2011;194(2–4):279–83.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Parry DA, et al. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am J Hum Genet. 2012;91(3):565–71.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wright JT, et al. Relationship of phenotype and genotype in X-linked amelogenesis imperfecta. Connect Tissue Res. 2003;44(suppl):72–8.

    Article  PubMed  Google Scholar 

  21. Hart PS, et al. Establishment of a nomenclature for X-linked amelogenesis imperfecta. Archs Oral Biol. 2002;47:255–60.

    Article  Google Scholar 

  22. Nussier M, et al. Phenotypic diversity and revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral Surg Oral Pathol Oral Med. 2004;97:220–30.

    Article  Google Scholar 

  23. Witkop CJJ. Partial expression of sex-linked amelogenesis imperfecta in females compatible with the Lyon hypothesis. Oral Surgery Oral Med Oral Pathol. 1967;23:174–82.

    Article  Google Scholar 

  24. Wright JT, et al. Enamel ultrastructure and protein content in X-linked amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol. 1993;76(2):192–9.

    Article  PubMed  Google Scholar 

  25. Wright JT. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A. 2006;140(23):2547–55.

    Article  PubMed Central  PubMed  Google Scholar 

  26. El-Sayed W, et al. Ultrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation. Cells Tissues Organs. 2010;191(3):235–9.

    Article  PubMed  Google Scholar 

  27. Kim JW, et al. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J Dent Res. 2013;92(10):899–904.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Jaureguiberry G, et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 2012;122(1–2):1–6.

    Article  PubMed  Google Scholar 

  29. Wang SK, et al. FAM20A mutations associated with enamel renal syndrome. J Dent Res. 2014;93(1):42–8.

    Google Scholar 

  30. Kantaputra PN, et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am J Med Genet A. 2014;164A(1):1–9.

    Google Scholar 

  31. Kim JW, et al. ENAM mutations in autosomal-dominant amelogenesis imperfecta. J Dent Res. 2005;84(3):278–82.

    Article  PubMed  Google Scholar 

  32. Hart PS, et al. Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature. Archs Oral Biol. 2003;48:589–96.

    Article  Google Scholar 

  33. Hart TC, et al. Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localized enamel defects. J Med Genet. 2003;40:900–6.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wright JT, Hall KI, Grubb BR. Enamel mineral composition of normal and cystic fibrosis transgenic mice. Adv Dent Res. 1996;10:270–4.

    Article  PubMed  Google Scholar 

  35. El-Sayed W, et al. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet. 2009;85(5):699–705.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Li W, et al. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001;19:7555–760.

    Article  Google Scholar 

  37. Ravassipour DB, et al. Unique enamel phenotype associated with amelogenin gene (AMELX) codon 41 point mutation. J Dent Res. 2000;79:1476–81.

    Article  PubMed  Google Scholar 

  38. Simmer JP, Hu JC. Expression, structure, and function of enamel proteinases. Connect Tissue Res. 2002;43(2–3):441–9.

    Article  PubMed  Google Scholar 

  39. Robinson C, Weatherell JA, Hallsworth AS. Variations in the composition of dental enamel within thin ground sections. Caries Res. 1971;5:44–57.

    Article  PubMed  Google Scholar 

  40. Wright JT, Hall KI, Yamauchi M. The enamel proteins in human amelogenesis imperfecta. Archs Oral Biol. 1997;42:149–59.

    Article  Google Scholar 

  41. Wright JT, et al. The mineral and protein content of enamel in amelogenesis imperfecta. Connect Tissue Res. 1995;31:247–52.

    Article  Google Scholar 

  42. Seow WK. Taurodontism of the mandibular first permanent molar distinguishes between the tricho-dento-osseous (TDO) syndrome and amelogenesis imperfecta. Clin Genet. 1993;43:240–6.

    Article  PubMed  Google Scholar 

  43. Crawford PJM, Aldred MJ. Amelogenesis imperfecta with taurodontism and the tricho-dento-osseous syndrome: separate conditions or a spectrum of disease? Clin Genet. 1990;38:44–50.

    Article  PubMed  Google Scholar 

  44. Wright JT, et al. Phenotypic variability of the tricho-dento-osseous syndrome associated with a DLX3 homeobox gene mutation. In: Chemistry and biology of mineralized tissues. Proceedings of the sixth international conference. Goldberg M, Boskey A, Robinson C, editors. Amer Acad Orthoped Surg: Rosemont; 2000. p. 27–31.

    Google Scholar 

  45. Dong J, et al. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A. 2005;133A(2):138–41.

    Article  PubMed  Google Scholar 

  46. Wright JT, et al. DLX3 c.561_562delCT mutation causes attenuated phenotype of tricho-dento-osseous syndrome. Am J Med Genet A. 2008;146(3):343–9.

    Article  Google Scholar 

  47. Persson M, Sundell S. Facial morphology and open bite deformity in amelogenesis imperfecta. Acta Odontol Scand. 1982;40:135–44.

    Article  PubMed  Google Scholar 

  48. Cartwright AR, Kula K, Wright JT. Craniofacial features associated with amelogenesis imperfecta. J Craniofac Genet Dev Biol. 1999;19:148–56.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Timothy Wright DDS, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wright, J.T. (2015). Amelogenesis Imperfecta: Current Understanding of Genotype-Phenotype. In: Drummond, B., Kilpatrick, N. (eds) Planning and Care for Children and Adolescents with Dental Enamel Defects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44800-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44800-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44799-4

  • Online ISBN: 978-3-662-44800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics