Skip to main content

Enamel Defects in the Permanent Dentition: Prevalence and Etiology

  • Chapter
  • First Online:
Planning and Care for Children and Adolescents with Dental Enamel Defects

Abstract

The prevalence of developmental defects of enamel (DDE) in the permanent dentition in developed countries has been reported to be in the range of 9–68 % and with no gender predilection. Several etiological factors have been implicated as being responsible for DDE in the permanent teeth. Although local, systemic, genetic or environmental factors have been attributed to DDE frequently they are likely to be multifactorial in nature. These factors are discussed in relation to the timing of enamel development with consideration of the evidence, or lack thereof, for the association between the putative etiological factors and the nature of the subsequent abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142(3):481–90.

    Article  PubMed  Google Scholar 

  2. King N, Wei S. A review of the prevalence of developmental enamel defects in permanent teeth. J Paleopathol. 1992;2:342–57.

    Google Scholar 

  3. Suckling GW, Brown RH, Herbison GP. The prevalence of developmental defects of enamel in 696 nine-year-old New Zealand children participating in a health and development study. Community Dent Health. 1985;2(4):303–13.

    PubMed  Google Scholar 

  4. Dooland MB, Wylie A. A photographic study of enamel defects among South Australian school children. Aust Dent J. 1989;34(5):470–3.

    Article  PubMed  Google Scholar 

  5. Dummer PM, Kingdon A, Kingdon R. Prevalence and distribution by tooth type and surface of developmental defects of dental enamel in a group of 15- to 16-year-old children in South Wales. Community Dent Health. 1990;7(4):369–77.

    PubMed  Google Scholar 

  6. Nunn JH, Murray JJ, Reynolds P, Tabari D, Breckon J. The prevalence of developmental defects of enamel in 15–16-year-old children residing in three districts (natural fluoride, adjusted fluoride, low fluoride) in the north east of England. Community Dent Health. 1992;9(3):235–47.

    PubMed  Google Scholar 

  7. Fyffe HE, Deery C, Pitts NB. Developmental defects of enamel in regularly attending adolescent dental patients in Scotland; prevalence and patient awareness. Community Dent Health. 1996;13(2):76–80.

    PubMed  Google Scholar 

  8. Rugg-Gunn AJ, al-Mohammadi SM, Butler TJ. Effects of fluoride level in drinking water, nutritional status, and socio-economic status on the prevalence of developmental defects of dental enamel in permanent teeth in Saudi 14-year-old boys. Caries Res. 1997;31(4):259–67.

    Article  PubMed  Google Scholar 

  9. Hiller KA, Wilfart G, Schmalz G. Developmental enamel defects in children with different fluoride supplementation–a follow-up study. Caries Res. 1998;32(6):405–11.

    Article  PubMed  Google Scholar 

  10. Dini EL, Holt RD, Bedi R. Prevalence of caries and developmental defects of enamel in 9–10 year old children living in areas in Brazil with differing water fluoride histories. Br Dent J. 2000;188(3):146–9.

    PubMed  Google Scholar 

  11. Jalevik B, Noren JG, Klingberg G, Barregard L. Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci. 2001;109(4):230–4.

    Article  PubMed  Google Scholar 

  12. Zagdwon AM, Toumba KJ, Curzon ME. The prevalence of developmental enamel defects in permanent molars in a group of English school children. Eur J Paediatr Dent. 2002;3(2):91–6.

    PubMed  Google Scholar 

  13. Ekanayake L, van der Hoek W. Prevalence and distribution of enamel defects and dental caries in a region with different concentrations of fluoride in drinking water in Sri Lanka. Int Dent J. 2003;53(4):243–8.

    Article  PubMed  Google Scholar 

  14. Cochran JA, Ketley CE, Arnadottir IB, Fernandes B, Koletsi-Kounari H, Oila AM, et al. A comparison of the prevalence of fluorosis in 8-year-old children from seven European study sites using a standardized methodology. Community Dent Oral Epidemiol. 2004;32 Suppl 1:28–33.

    Article  PubMed  Google Scholar 

  15. Mackay TD, Thomson WM. Enamel defects and dental caries among Southland children. N Z Dent J. 2005;101(2):35–43.

    PubMed  Google Scholar 

  16. Balmer RC, Laskey D, Mahoney E, Toumba KJ. Prevalence of enamel defects and MIH in non-fluoridated and fluoridated communities. Eur J Paediatr Dent. 2005;6(4):209–12.

    PubMed  Google Scholar 

  17. Wong HM, McGrath C, Lo EC, King NM. Association between developmental defects of enamel and different concentrations of fluoride in the public water supply. Caries Res. 2006;40(6):481–6.

    Article  PubMed  Google Scholar 

  18. Hoffmann RH, de Sousa Mda L, Cypriano S. Prevalence of enamel defects and the relationship to dental caries in deciduous and permanent dentition in Indaiatuba, Sao Paulo, Brazil. Cad Saude Publica. 2007;23(2):435–44.

    Article  PubMed  Google Scholar 

  19. Muratbegovic A, Zukanovic A, Markovic N. Molar-incisor-hypomineralisation impact on developmental defects of enamel prevalence in a low fluoridated area. Eur Arch Paediatr Dent. 2008;9(4):228–31.

    Article  PubMed  Google Scholar 

  20. Arrow P. Prevalence of developmental enamel defects of the first permanent molars among school children in Western Australia. Aust Dent J. 2008;53(3):250–9.

    Article  PubMed  Google Scholar 

  21. Kanagaratnam S, Schluter P, Durward C, Mahood R, Mackay T. Enamel defects and dental caries in 9-year-old children living in fluoridated and nonfluoridated areas of Auckland, New Zealand. Community Dent Oral Epidemiol. 2009;37(3):250–9.

    Article  PubMed  Google Scholar 

  22. Seow WK, Ford D, Kazoullis S, Newman B, Holcombe T. Comparison of enamel defects in the primary and permanent dentitions of children from a low-fluoride District in Australia. Pediatr Dent. 2011;33(3):207–12.

    PubMed  Google Scholar 

  23. Casanova-Rosado AJ, Medina-Solis CE, Casanova-Rosado JF, Vallejos-Sanchez AA, Martinez-Mier EA, Loyola-Rodriguez JP, et al. Association between developmental enamel defects in the primary and permanent dentitions. Eur J Paediatr Dent. 2011;12(3):155–8.

    PubMed  Google Scholar 

  24. Robles MJ, Ruiz M, Bravo-Perez M, Gonzalez E, Penalver MA. Prevalence of enamel defects in primary and permanent teeth in a group of schoolchildren from Granada (Spain). Med Oral Patol Oral Cir Bucal. 2013;18(2):e187–93.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Vargas-Ferreira F, Zeng J, Thomson WM, Peres MA, Demarco FF. Association between developmental defects of enamel and dental caries in schoolchildren. J Dent. 2014;42(5):540–6.

    Article  PubMed  Google Scholar 

  26. Angelillo IF, Romano F, Fortunato L, Montanaro D. Prevalence of dental caries and enamel defects in children living in areas with different water fluoride concentrations. Community Dent Health. 1990;7(3):229–36.

    PubMed  Google Scholar 

  27. Suckling GW, Pearce EI. Developmental defects of enamel in a group of New Zealand children: their prevalence and some associated etiological factors. Community Dent Oral Epidemiol. 1984;12(3):177–84.

    Article  PubMed  Google Scholar 

  28. de Liefde B, Herbison GP. Prevalence of developmental defects of enamel and dental caries in New Zealand children receiving differing fluoride supplementation. Community Dent Oral Epidemiol. 1985;13(3):164–7.

    Article  PubMed  Google Scholar 

  29. Hillson S, Bond S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am J Phys Anthropol. 1997;104(1):89–103.

    Article  PubMed  Google Scholar 

  30. King N. Prevalence and characteristics of developmental defects of dental enamel in Hong Kong. PhD thesis, The University of Hong Kong; 1990.

    Google Scholar 

  31. Giro CM. Enamel hypoplasia in human teeth; an examination of its causes. J Am Dent Assoc. 1947;34(5):310–7.

    PubMed  Google Scholar 

  32. Jorgenson RJ, Yost C. Etiology of enamel dysplasia. J Pedod. 1982;6(4):315–29.

    PubMed  Google Scholar 

  33. Sleiter R, von Arx T. Developmental disorders of permanent teeth after injuries of their primary predecessors. A retrospective study. Schweiz Monatsschr Zahnmed. 2002;112(3):214–9.

    PubMed  Google Scholar 

  34. Hall S, Iranpour B. The effect of trauma on normal tooth development. Report of two cases. ASDC J Dent Child. 1968;35(4):291–5.

    PubMed  Google Scholar 

  35. Holan G, Topf J, Fuks AB. Effect of root canal infection and treatment of traumatized primary incisors on their permanent successors. Endod Dent Traumatol. 1992;8(1):12–5.

    Article  PubMed  Google Scholar 

  36. Dixon DA. Defects of structure and formation of the teeth in persons with cleft palate and the effect of reparative surgery on the dental tissues. Oral Surg Oral Med Oral Pathol. 1968;25(3):435–46.

    Article  PubMed  Google Scholar 

  37. Kleine-Hakala M, Hukki J, Hurmerinta K. Effect of mandibular distraction osteogenesis on developing molars. Orthod Craniofac Res. 2007;10(4):196–202.

    Article  PubMed  Google Scholar 

  38. Ranta R. A review of tooth formation in children with cleft lip/palate. Am J Orthod Dentofacial Orthop. 1986;90(1):11–8.

    Article  PubMed  Google Scholar 

  39. Williamson JJ. Trauma during exodontia. An aetiologic factor in hypoplastic premolars. Br Dent J. 1966;121(6):284–9.

    PubMed  Google Scholar 

  40. Kimoto S, Suga H, Yamaguchi M, Uchimura N, Ikeda M, Kakizawa T. Hypoplasia of primary and permanent teeth following osteitis and the implications of delayed diagnosis of a neonatal maxillary primary molar. Int J Paediatr Dent. 2003;13(1):35–40.

    Article  PubMed  Google Scholar 

  41. McCormick J, Filostrat DJ. Injury to the teeth of succession by abscess of the temporary teeth. J Dent Child. 1967;34(6):501–4.

    PubMed  Google Scholar 

  42. Turner J. Effects of abscess arising from temporary teeth. Br J Dent Sci. 1906;49:562–4.

    Google Scholar 

  43. Brook AH, Winter GB. Developmental arrest of permanent tooth germs following pulpal infection of deciduous teeth. Br Dent J. 1975;139(1):9–11.

    Article  PubMed  Google Scholar 

  44. Lunt RC, Law DB. A review of the chronology of calcification of deciduous teeth. J Am Dent Assoc. 1974;89(3):599–606.

    PubMed  Google Scholar 

  45. Knothe H, Dette GA. Antibiotics in pregnancy: toxicity and teratogenicity. Infection. 1985;13(2):49–51.

    Article  PubMed  Google Scholar 

  46. Phillips-Howard PA, Wood D. The safety of antimalarial drugs in pregnancy. Drug Saf. 1996;14(3):131–45.

    Article  PubMed  Google Scholar 

  47. Billings RJ, Berkowitz RJ, Watson G. Teeth. Pediatrics. 2004;113(4 Suppl):1120–7.

    PubMed  Google Scholar 

  48. Fejerskov O, Larsen MJ, Richards A, Baelum V. Dental tissue effects of fluoride. Adv Dent Res. 1994;8(1):15–31.

    PubMed  Google Scholar 

  49. Rozier RG. Epidemiologic indices for measuring the clinical manifestations of dental fluorosis: overview and critique. Adv Dent Res. 1994;8(1):39–55.

    PubMed  Google Scholar 

  50. Hong L, Levy SM, Warren JJ, Broffitt B, Cavanaugh J. Fluoride intake levels in relation to fluorosis development in permanent maxillary central incisors and first molars. Caries Res. 2006;40(6):494–500.

    Article  PubMed  Google Scholar 

  51. Pendrys DG, Stamm JW. Relationship of total fluoride intake to beneficial effects and enamel fluorosis. J Dent Res. 1990;69 Spec No:529–38. Discussion 56–7.

    PubMed  Google Scholar 

  52. Cutress TW, Suckling GW. Differential diagnosis of dental fluorosis. J Dent Res. 1990;69 Spec No:714–20. Discussion 21.

    PubMed  Google Scholar 

  53. Curzon ME, Spector PC. Enamel mottling in a high strontium area of the U.S.A. Community Dent Oral Epidemiol. 1977;5(5):243–7.

    Article  PubMed  Google Scholar 

  54. Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds–a review. Int Dent J. 2006;56(6):323–31.

    Article  PubMed  Google Scholar 

  55. Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, et al. Lactational exposure of Han/Wistar rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. J Dent Res. 2004;83(2):139–44.

    Article  PubMed  Google Scholar 

  56. Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Holtta P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci. 1996;104(5–6):493–7.

    Article  PubMed  Google Scholar 

  57. Alaluusua S, Lukinmaa PL, Vartiainen T, Partanen M, Torppa J, Tuomisto J. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ Toxicol Pharmacol. 1996;1(3):193–7.

    Article  PubMed  Google Scholar 

  58. Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect. 2004;112(13):1313–8.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Jan J, Sovcikova E, Kocan A, Wsolova L, Trnovec T. Developmental dental defects in children exposed to PCBs in eastern Slovakia. Chemosphere. 2007;67(9):S350–4.

    Article  PubMed  Google Scholar 

  60. Kuscu OO, Caglar E, Aslan S, Durmusoglu E, Karademir A, Sandalli N. The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm-green energy island. Int J Paediatr Dent. 2009;19(3):176–85.

    Article  PubMed  Google Scholar 

  61. Laisi S, Kiviranta H, Lukinmaa PL, Vartiainen T, Alaluusua S. Molar-incisor-hypomineralisation and dioxins: new findings. Eur Arch Paediatr Dent. 2008;9(4):224–7.

    Article  PubMed  Google Scholar 

  62. Wozniak K. Developmental abnormalities of mineralization in populations with varying exposure to fluorine compounds. Ann Acad Med Stetin. 2000;46:305–15.

    PubMed  Google Scholar 

  63. Giunta JL. Dental changes in hypervitaminosis D. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(4):410–3.

    Article  PubMed  Google Scholar 

  64. Lawson BF, Stout FW, Ahern DE, Sneed WD. The incidence of enamel hypoplasia associated with chronic pediatric lead poisoning. S C Dent J. 1971;29(11):5–10.

    PubMed  Google Scholar 

  65. Fouda N, Caracatsanis M, Hammarstrom L. Developmental disturbances of the rat molar induced by two diphosphonates. Adv Dent Res. 1989;3(2):234–40.

    PubMed  Google Scholar 

  66. Jan J, Vrbic V. Polychlorinated biphenyls cause developmental enamel defects in children. Caries Res. 2000;34(6):469–73.

    Article  PubMed  Google Scholar 

  67. Minicucci EM, Lopes LF, Crocci AJ. Dental abnormalities in children after chemotherapy treatment for acute lymphoid leukemia. Leuk Res. 2003;27(1):45–50.

    Article  PubMed  Google Scholar 

  68. Duggal MS, Curzon ME, Bailey CC, Lewis IJ, Prendergast M. Dental parameters in the long-term survivors of childhood cancer compared with siblings. Oral Oncol. 1997;33(5):348–53.

    Article  PubMed  Google Scholar 

  69. Pajari U, Lanning M. Developmental defects of teeth in survivors of childhood ALL are related to the therapy and age at diagnosis. Med Pediatr Oncol. 1995;24(5):310–4.

    Article  PubMed  Google Scholar 

  70. Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Arwill T, Olsson O, Bergenholtz A. Epidermolysis bullosa hereditaria. 3. A histologic study of changes in teeth in the polydysplastic dystrophic and lethal forms. Oral Surg Oral Med Oral Pathol. 1965;19:723–44.

    Article  PubMed  Google Scholar 

  72. Wright JT, Johnson LB, Fine JD. Development defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol. 1993;38(11):945–55.

    Article  PubMed  Google Scholar 

  73. Jensen SB, Illum F, Dupont E. Nature and frequency of dental changes in idiopathic hypoparathyroidism and pseudohypoparathyroidism. Scand J Dent Res. 1981;89(1):26–37.

    PubMed  Google Scholar 

  74. Spangler GS, Hall KI, Kula K, Hart TC, Wright JT. Enamel structure and composition in the tricho-dento-osseous syndrome. Connect Tissue Res. 1998;39(1–3):165–75. Discussion 87–94.

    Article  PubMed  Google Scholar 

  75. Jacobsen PE, Haubek D, Henriksen TB, Ostergaard JR, Poulsen S. Developmental enamel defects in children born preterm: a systematic review. Eur J Oral Sci. 2014;122(1):7–14.

    Article  PubMed  Google Scholar 

  76. Beentjes VE, Weerheijm KL, Groen HJ. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J Paediatr Dent. 2002;3(1):9–13.

    PubMed  Google Scholar 

  77. Bell DS. Protean manifestations of vitamin D deficiency, part 1: the epidemic of deficiency. South Med J. 2011;104(5):331–4.

    Article  PubMed  Google Scholar 

  78. Foster BL, Nociti Jr FH, Somerman MJ. The rachitic tooth. Endocr Rev. 2014;35(1):1–34.

    Article  PubMed  Google Scholar 

  79. Flanagan N, O’Connor WJ, McCartan B, Miller S, McMenamin J, Watson R. Developmental enamel defects in tuberous sclerosis: a clinical genetic marker? J Med Genet. 1997;34(8):637–9.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Narang A, Maguire A, Nunn JH, Bush A. Oral health and related factors in cystic fibrosis and other chronic respiratory disorders. Arch Dis Child. 2003;88(8):702–7.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Rasmusson CG, Eriksson MA. Celiac disease and mineralisation disturbances of permanent teeth. Int J Paediatr Dent. 2001;11(3):179–83.

    Article  PubMed  Google Scholar 

  82. Wierink CD, van Diermen DE, Aartman IH, Heymans HS. Dental enamel defects in children with coeliac disease. Int J Paediatr Dent. 2007;17(3):163–8.

    Article  PubMed  Google Scholar 

  83. Zambrano M, Nikitakis NG, Sanchez-Quevedo MC, Sauk JJ, Sedano H, Rivera H. Oral and dental manifestations of vitamin D-dependent rickets type I: report of a pediatric case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(6):705–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel M. King BDS Hons MSc Hons, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anthonappa, R.P., King, N.M. (2015). Enamel Defects in the Permanent Dentition: Prevalence and Etiology. In: Drummond, B., Kilpatrick, N. (eds) Planning and Care for Children and Adolescents with Dental Enamel Defects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44800-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44800-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44799-4

  • Online ISBN: 978-3-662-44800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics