Advertisement

Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies

  • Isaac KaminerEmail author
  • Enric Xargay
  • Venanzio Cichella
  • Naira Hovakimyan
  • António Manuel Pascoal
  • A. Pedro Aguiar
  • Vladimir Dobrokhodov
  • Reza Ghabcheloo

Abstract

This paper describes a multi-vehicle motion control framework for time-critical cooperative missions and evaluates its performance by considering two case studies: a simultaneous arrival mission scenario and a sequential auto-landing of a fleet of UAVs. In the adopted setup, the UAVs are assigned nominal spatial paths and speed profiles along those paths; the vehicles are then tasked to execute cooperative path following, rather than “open-loop” trajectory tracking. This cooperative strategy yields robust behavior against external disturbances by allowing the UAVs to negotiate their speeds along the paths in response to information exchanged over a supporting communications network.

Keywords

Unmanned Aerial Vehicle Coordination State Transition Path Virtual Target Multiple UAVs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsitsiklis, J.N., Athans, M.: Convergence and asymptotic agreement in distributed decision problems. IEEE Transactions on Automatic Control 29(1), 42–50 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Sepulchre, R., Paley, D., Leonard, N.: Collective Motion and Oscillator Synchronization. In: Kumar, V., Leonard, N., Stephen Morse, A. (eds.) Cooperative Control. LNCIS, vol. 309, pp. 189–206. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lin, Z., Francis, B.A., Maggiore, M.: State agreement for continuous-time coupled nonlinear systems. SIAM Journal on Control and Optimization 46(1), 288–307 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Transactions on Robotics and Automation 17(6), 947–951 (2001)CrossRefGoogle Scholar
  6. 6.
    Olfati Saber, R., Dunbar, W.B., Murray, R.M.: Cooperative control of multi-vehicle systems using cost graphs and optimization. In: American Control Conference, Denver, CO, pp. 2217–2222 (June 2003)Google Scholar
  7. 7.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Ghabcheloo, R., Pascoal, A.M., Silvestre, C., Kaminer, I.: Coordinated path following control of multiple wheeled robots using linearization techniques. International Journal of Systems Science 37(6), 399–414 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Stevenson, D., Wheeler, M., Campbell, M.E., Whitacre, W.W., Rysdyk, R.T., Wise, R.: Cooperative tracking flight test. In: AIAA Guidance, Navigation and Control Conference, Hilton Head, SC. AIAA 2007-6756 (August 2007)Google Scholar
  11. 11.
    Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., Balas, G.J.: Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Transactions on Control System Technology 16(1), 19–33 (2008)CrossRefGoogle Scholar
  12. 12.
    Schouwenaars, T., How, J.P., Feron, E.: Decentralized cooperative trajectory planning of multiple aircraft with hard safety guarantees. In: AIAA Guidance, Navigation and Control Conference, Providence, RI. AIAA 2004-5141 (August 2004)Google Scholar
  13. 13.
    McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooperative timing missions. AIAA Journal of Guidance, Control and Dynamics 28(1), 150–161 (2005)CrossRefGoogle Scholar
  14. 14.
    Scholte, E., Campbell, M.E.: Robust nonlinear model predictive control with partial state information. IEEE Transactions on Control System Technology 16(4), 636–651 (2008)CrossRefGoogle Scholar
  15. 15.
    Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Transactions on Control System Technology 19(2), 423–431 (2011)CrossRefGoogle Scholar
  16. 16.
    Fang, L., Antsaklis, P.J., Tzimas, A.: Asynchronous consensus protocols: Preliminary results, simulations and open questions. In: IEEE Conference on Decision and Control, Seville, Spain, pp. 2194–2199 (December 2005)Google Scholar
  17. 17.
    Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on Automatic Control 50(3), 387–392 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Stilwell, D.J., Bishop, B.E.: Platoons of underwater vehicles. IEEE Control Systems Magazine 20(6), 45–52 (2000)CrossRefGoogle Scholar
  19. 19.
    Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient conditions for fast switching synchronization in time-varying network topologies. SIAM Journal of Applied Dynamical Systems 5(1), 140–156 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Cao, M., Spielman, D.A., Morse, A.S.: A lower bound on convergence of a distributed network consensus algorithm. In: IEEE Conference on Decision and Control, Seville, Spain, pp. 2356–2361 (December 2005)Google Scholar
  21. 21.
    Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of state-dependent graph Laplacian. IEEE Transactions on Automatic Control 51(1), 116–120 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Mesbahi, M., Hadaegh, F.Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. AIAA Journal of Guidance, Control and Dynamics 24(2), 369–377 (2001)CrossRefGoogle Scholar
  23. 23.
    Song, Y.D., Li, Y., Liao, X.H.: Orthogonal transformation based robust adaptive close formation control of multi-UAVs. In: American Control Conference, Portland, OR, vol. 5, pp. 2983–2988 (June 2005)Google Scholar
  24. 24.
    Stipanović, D.M., İnalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Skjetne, R., Moi, S., Fossen, T.I.: Nonlinear formation control of marine craft. In: IEEE Conference on Decision and Control, Las Vegas, NV, vol. 2, pp. 1699–1704 (December 2002)Google Scholar
  26. 26.
    Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Norway (2002)Google Scholar
  27. 27.
    Pereira, F.L., de Sousa, J.B.: Coordinated control of networked vehicles: An autonomous underwater system. Automation and Remote Control 65(7), 1037–1045 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Ihle, I.A.F.: Coordinated Control of Marine Craft. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway (September 2006)Google Scholar
  29. 29.
    Ihle, I.A.F., Jouffroy, J., Fossen, T.I.: Robust formation control of marine craft using Lagrange multipliers. In: Pettersen, K.Y., Gravdahl, J.T., Nijmeijer, H. (eds.) Group Coordination and Cooperative Control. LNCIS, vol. 336, pp. 113–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Breivik, M., Hovstein, V.E., Fossen, T.I.: Ship formation control: A guided leader-follower approach. In: IFAC World Congress, Seoul, South Korea (July 2008)Google Scholar
  31. 31.
    Xargay, E., Kaminer, I., Pascoal, A., Hovakimyan, N., Dobrokhodov, V., Cichella, V., Aguiar, A.P., Ghabcheloo, R.: Time-critical cooperative path following of multiple unmanned aerial vehicles over time-varying networks. AIAA Journal of Guidance, Control and Dynamics 36(2), 499–516 (2013)CrossRefGoogle Scholar
  32. 32.
    Aguiar, A.P., Pascoal, A.M.: Coordinated path-following control for nonlinear systems with logic-based communication. In: IEEE Conference on Decision and Control, New Orleans, LA, pp. 1473–1479 (December 2007)Google Scholar
  33. 33.
    Ghabcheloo, R., Kaminer, I., Aguiar, A.P., Pascoal, A.M.: A general framework for multiple vehicle time-coordinated path following control. In: American Control Conference, St. Louis, MO, pp. 3071–3076 (June 2009)Google Scholar
  34. 34.
    Ghabcheloo, R., Aguiar, A.P., Pascoal, A.M., Silvestre, C., Kaminer, I., Hespanha, J.P.: Coordinated path-following in the presence of communication losses and delays. SIAM Journal on Control and Optimization 48(1), 234–265 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Kaminer, I., Pascoal, A.M., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Path following for unmanned aerial vehicles using \(\mathcal{L}_1\) adaptive augmentation of commercial autopilots. AIAA Journal of Guidance, Control and Dynamics 33(2), 550–564 (2010)CrossRefGoogle Scholar
  36. 36.
    Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., Cao, C.: Time-critical cooperative control for multiple autonomous systems. IEEE Control Systems Magazine 32(5), 49–73 (2012)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Choe, R., Cichella, V., Xargay, E., Hovakimyan, N., Trujillo, A.C., Kaminer, I.: A trajectory-generation framework for time-critical cooperative missions. In: AIAA Infotech@Aerospace, Boston, MA. AIAA 2013-4582 (August 2013)Google Scholar
  38. 38.
    Lapierre, L., Soetanto, D., Pascoal, A.M.: Non-singular path-following control of a unicycle in the presence of parametric modeling uncertainties. International Journal of Robust and Nonlinear Control 16(10), 485–503 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Bishop, R.L.: There is more than one way to frame a curve. The American Mathematical Monthly 82(3), 246–251 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, New York, NY (1993)Google Scholar
  41. 41.
    Arcak, M.: Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control 52(8), 1380–1390 (2007)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Xargay, E., Choe, R., Hovakimyan, N., Kaminer, I.: Multi-leader coordination algorithm for networks with switching topology and quantized information. Automatica 50(3), 841–851 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Aguiar, A.P., Kaminer, I., Ghabcheloo, R., Pascoal, A.M., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Time-coordinated path following of multiple UAVs over time-varying networks using \(\mathcal{L}_1\) adaptation. In: AIAA Guidance, Navigation and Control Conference, Honolulu, HI. AIAA 2008-7131 (August 2008)Google Scholar
  44. 44.
    Lee, T., Leok, M., McClamroch, N.H.: Control of complex maneuvers for a quadrotor UAV using geometric methods on SE(3). IEEE Transactions on Automatic Control (2010), available online:arXiv:1003.2005v3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Isaac Kaminer
    • 1
    Email author
  • Enric Xargay
    • 2
  • Venanzio Cichella
    • 2
  • Naira Hovakimyan
    • 2
  • António Manuel Pascoal
    • 3
  • A. Pedro Aguiar
    • 4
  • Vladimir Dobrokhodov
    • 1
  • Reza Ghabcheloo
    • 5
  1. 1.Naval Postgraduate SchoolMontereyUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  4. 4.Faculty of EngineeringUniversity of PortoPortoPortugal
  5. 5.Tampere University of TechnologyTampereFinland

Personalised recommendations