Skip to main content

Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies

  • Conference paper

Abstract

This paper describes a multi-vehicle motion control framework for time-critical cooperative missions and evaluates its performance by considering two case studies: a simultaneous arrival mission scenario and a sequential auto-landing of a fleet of UAVs. In the adopted setup, the UAVs are assigned nominal spatial paths and speed profiles along those paths; the vehicles are then tasked to execute cooperative path following, rather than “open-loop” trajectory tracking. This cooperative strategy yields robust behavior against external disturbances by allowing the UAVs to negotiate their speeds along the paths in response to information exchanged over a supporting communications network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsitsiklis, J.N., Athans, M.: Convergence and asymptotic agreement in distributed decision problems. IEEE Transactions on Automatic Control 29(1), 42–50 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sepulchre, R., Paley, D., Leonard, N.: Collective Motion and Oscillator Synchronization. In: Kumar, V., Leonard, N., Stephen Morse, A. (eds.) Cooperative Control. LNCIS, vol. 309, pp. 189–206. Springer, Heidelberg (2005)

    Google Scholar 

  3. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  4. Lin, Z., Francis, B.A., Maggiore, M.: State agreement for continuous-time coupled nonlinear systems. SIAM Journal on Control and Optimization 46(1), 288–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Transactions on Robotics and Automation 17(6), 947–951 (2001)

    Article  Google Scholar 

  6. Olfati Saber, R., Dunbar, W.B., Murray, R.M.: Cooperative control of multi-vehicle systems using cost graphs and optimization. In: American Control Conference, Denver, CO, pp. 2217–2222 (June 2003)

    Google Scholar 

  7. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  8. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghabcheloo, R., Pascoal, A.M., Silvestre, C., Kaminer, I.: Coordinated path following control of multiple wheeled robots using linearization techniques. International Journal of Systems Science 37(6), 399–414 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stevenson, D., Wheeler, M., Campbell, M.E., Whitacre, W.W., Rysdyk, R.T., Wise, R.: Cooperative tracking flight test. In: AIAA Guidance, Navigation and Control Conference, Hilton Head, SC. AIAA 2007-6756 (August 2007)

    Google Scholar 

  11. Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., Balas, G.J.: Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Transactions on Control System Technology 16(1), 19–33 (2008)

    Article  Google Scholar 

  12. Schouwenaars, T., How, J.P., Feron, E.: Decentralized cooperative trajectory planning of multiple aircraft with hard safety guarantees. In: AIAA Guidance, Navigation and Control Conference, Providence, RI. AIAA 2004-5141 (August 2004)

    Google Scholar 

  13. McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooperative timing missions. AIAA Journal of Guidance, Control and Dynamics 28(1), 150–161 (2005)

    Article  Google Scholar 

  14. Scholte, E., Campbell, M.E.: Robust nonlinear model predictive control with partial state information. IEEE Transactions on Control System Technology 16(4), 636–651 (2008)

    Article  Google Scholar 

  15. Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Transactions on Control System Technology 19(2), 423–431 (2011)

    Article  Google Scholar 

  16. Fang, L., Antsaklis, P.J., Tzimas, A.: Asynchronous consensus protocols: Preliminary results, simulations and open questions. In: IEEE Conference on Decision and Control, Seville, Spain, pp. 2194–2199 (December 2005)

    Google Scholar 

  17. Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on Automatic Control 50(3), 387–392 (2005)

    Article  MathSciNet  Google Scholar 

  18. Stilwell, D.J., Bishop, B.E.: Platoons of underwater vehicles. IEEE Control Systems Magazine 20(6), 45–52 (2000)

    Article  Google Scholar 

  19. Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient conditions for fast switching synchronization in time-varying network topologies. SIAM Journal of Applied Dynamical Systems 5(1), 140–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao, M., Spielman, D.A., Morse, A.S.: A lower bound on convergence of a distributed network consensus algorithm. In: IEEE Conference on Decision and Control, Seville, Spain, pp. 2356–2361 (December 2005)

    Google Scholar 

  21. Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of state-dependent graph Laplacian. IEEE Transactions on Automatic Control 51(1), 116–120 (2006)

    Article  MathSciNet  Google Scholar 

  22. Mesbahi, M., Hadaegh, F.Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. AIAA Journal of Guidance, Control and Dynamics 24(2), 369–377 (2001)

    Article  Google Scholar 

  23. Song, Y.D., Li, Y., Liao, X.H.: Orthogonal transformation based robust adaptive close formation control of multi-UAVs. In: American Control Conference, Portland, OR, vol. 5, pp. 2983–2988 (June 2005)

    Google Scholar 

  24. Stipanović, D.M., İnalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Skjetne, R., Moi, S., Fossen, T.I.: Nonlinear formation control of marine craft. In: IEEE Conference on Decision and Control, Las Vegas, NV, vol. 2, pp. 1699–1704 (December 2002)

    Google Scholar 

  26. Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Norway (2002)

    Google Scholar 

  27. Pereira, F.L., de Sousa, J.B.: Coordinated control of networked vehicles: An autonomous underwater system. Automation and Remote Control 65(7), 1037–1045 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ihle, I.A.F.: Coordinated Control of Marine Craft. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway (September 2006)

    Google Scholar 

  29. Ihle, I.A.F., Jouffroy, J., Fossen, T.I.: Robust formation control of marine craft using Lagrange multipliers. In: Pettersen, K.Y., Gravdahl, J.T., Nijmeijer, H. (eds.) Group Coordination and Cooperative Control. LNCIS, vol. 336, pp. 113–129. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Breivik, M., Hovstein, V.E., Fossen, T.I.: Ship formation control: A guided leader-follower approach. In: IFAC World Congress, Seoul, South Korea (July 2008)

    Google Scholar 

  31. Xargay, E., Kaminer, I., Pascoal, A., Hovakimyan, N., Dobrokhodov, V., Cichella, V., Aguiar, A.P., Ghabcheloo, R.: Time-critical cooperative path following of multiple unmanned aerial vehicles over time-varying networks. AIAA Journal of Guidance, Control and Dynamics 36(2), 499–516 (2013)

    Article  Google Scholar 

  32. Aguiar, A.P., Pascoal, A.M.: Coordinated path-following control for nonlinear systems with logic-based communication. In: IEEE Conference on Decision and Control, New Orleans, LA, pp. 1473–1479 (December 2007)

    Google Scholar 

  33. Ghabcheloo, R., Kaminer, I., Aguiar, A.P., Pascoal, A.M.: A general framework for multiple vehicle time-coordinated path following control. In: American Control Conference, St. Louis, MO, pp. 3071–3076 (June 2009)

    Google Scholar 

  34. Ghabcheloo, R., Aguiar, A.P., Pascoal, A.M., Silvestre, C., Kaminer, I., Hespanha, J.P.: Coordinated path-following in the presence of communication losses and delays. SIAM Journal on Control and Optimization 48(1), 234–265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaminer, I., Pascoal, A.M., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Path following for unmanned aerial vehicles using \(\mathcal{L}_1\) adaptive augmentation of commercial autopilots. AIAA Journal of Guidance, Control and Dynamics 33(2), 550–564 (2010)

    Article  Google Scholar 

  36. Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., Cao, C.: Time-critical cooperative control for multiple autonomous systems. IEEE Control Systems Magazine 32(5), 49–73 (2012)

    Article  MathSciNet  Google Scholar 

  37. Choe, R., Cichella, V., Xargay, E., Hovakimyan, N., Trujillo, A.C., Kaminer, I.: A trajectory-generation framework for time-critical cooperative missions. In: AIAA Infotech@Aerospace, Boston, MA. AIAA 2013-4582 (August 2013)

    Google Scholar 

  38. Lapierre, L., Soetanto, D., Pascoal, A.M.: Non-singular path-following control of a unicycle in the presence of parametric modeling uncertainties. International Journal of Robust and Nonlinear Control 16(10), 485–503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bishop, R.L.: There is more than one way to frame a curve. The American Mathematical Monthly 82(3), 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, New York, NY (1993)

    Google Scholar 

  41. Arcak, M.: Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control 52(8), 1380–1390 (2007)

    Article  MathSciNet  Google Scholar 

  42. Xargay, E., Choe, R., Hovakimyan, N., Kaminer, I.: Multi-leader coordination algorithm for networks with switching topology and quantized information. Automatica 50(3), 841–851 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aguiar, A.P., Kaminer, I., Ghabcheloo, R., Pascoal, A.M., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Time-coordinated path following of multiple UAVs over time-varying networks using \(\mathcal{L}_1\) adaptation. In: AIAA Guidance, Navigation and Control Conference, Honolulu, HI. AIAA 2008-7131 (August 2008)

    Google Scholar 

  44. Lee, T., Leok, M., McClamroch, N.H.: Control of complex maneuvers for a quadrotor UAV using geometric methods on SE(3). IEEE Transactions on Automatic Control (2010), available online:arXiv:1003.2005v3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Kaminer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaminer, I. et al. (2015). Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies. In: Choukroun, D., Oshman, Y., Thienel, J., Idan, M. (eds) Advances in Estimation, Navigation, and Spacecraft Control. ENCS 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44785-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44785-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44784-0

  • Online ISBN: 978-3-662-44785-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics