Skip to main content

Deeper Local Search for Better Approximation on Maximum Internal Spanning Trees

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

Spanning tree has been fundamental in the research of graph algorithms. In this paper, we study the optimization problem MaxIST, which maximizes the number of internal nodes in a spanning tree of a given graph, and is a generalization of the famous Hamiltonian-Path problem. We present a polynomial-time approximation algorithm based on a deep local search strategy, identify combinatorial structures that support thorough analysis on the spanning trees resulted from such deep local search strategies, and prove that our algorithm has an approximation ratio 1.5 for the MaxIST problem, improving the previous best approximation algorithm of ratio 5/3 for the problem.

This work is supported by the National Natural Science Foundation of China under Grant (61173051, 61103033, 71221061).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazlamacci, C., Hindi, K.: Minimum-weight spanning tree algorithms: a survey and empirical study. Computer & Operations Research 28, 767–785 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Binkele-Raible, D., Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen, N., Fomin, F., Gutin, G., Kim, E., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching broblem. J. Comput. Syst. Sci. 76(7), 650–662 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fomin, F., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2012)

    Article  Google Scholar 

  5. Gabow, H., Myers, E.: Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 7(3), 280–287 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inform. Process. Lett. 52, 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Thoery of NP-completeness. Freeman, W. H. and Company, New York (1979)

    Google Scholar 

  8. Johnson, D., Papadimitriou, C., Yanakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37, 79–100 (1988)

    Article  MATH  Google Scholar 

  9. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29, 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Malpani, N., Chen, J.: A note on practical construction of maximum bandwidth paths. Inf. Process. Lett. 83(3), 175–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion: improving on Steiner tree and related problems. Algorithmica 65(4), 868–884 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Perlman, R.: Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, ch. 3, 2nd edn. Addison-Wesley (2000)

    Google Scholar 

  14. Prieto, E., Sloper, C.: Either/or: Using vertex cover structure in designing FPT-algorithms – the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Prieto, E., Sloper, C.: Reducing to independent set structure – the case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MATH  MathSciNet  Google Scholar 

  16. Salamon, G.: Approximating the maximum internal spanning tree problem. Theor. Comput. Sci. 410, 5273–5284 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Salamon, G.: A survey on algorithms for the maximum internal tree and related problem. Electron. Notes Discrete Math. 36, 1209–1216 (2010)

    Article  Google Scholar 

  18. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information Processing Letters 105, 164–169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wu, B., Chao, K.-M.: Spanning Trees and Optimization Problems. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Chen, J., Wang, J. (2014). Deeper Local Search for Better Approximation on Maximum Internal Spanning Trees. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics