Skip to main content

Losing Weight by Gaining Edges

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8737)

Abstract

We present a new way to encode weighted sums into unweighted pairwise constraints, obtaining the following results.

  • Define the k-SUM problem to be: given n integers in [ − n 2k,n 2k] are there k which sum to zero? (It is well known that the same problem over arbitrary integers is equivalent to the above definition, by linear-time randomized reductions.) We prove that this definition of k-SUM remains W[1]− hard, and is in fact W[1]-complete: k-SUM can be reduced to f(kn o(1) instances of k-Clique.

  • The maximum node-weighted k-Clique and node-weighted k-dominating set problems can be reduced to n o(1) instances of the unweighted k-Clique and k-dominating set problems, respectively. This implies a strong equivalence between the time complexities of the node weighted problems and the unweighted problems: any polynomial improvement on one would imply an improvement for the other.

  • A triangle of weight 0 in a node weighted graph with m edges can be deterministically found in m 1.41 time.

Keywords

  • Edge Weight
  • Full Version
  • Node Weight
  • Pairwise Constraint
  • Unweighted Version

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44777-2_1
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-44777-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, A., Lewi, K.: Exact Weight Subgraphs and the k-Sum Conjecture. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 1–12. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. CoRR, abs/1402.0054 (2014)

    Google Scholar 

  3. Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2), 157–171 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM. Algorithmica 50(4), 584–596 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Barequet, G., Har-Peled, S.: Polygon Containment and Translational Min-Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput. Geometry Appl. 11(4), 465–474 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Bhattacharyya, A., Indyk, P., Woodruff, D.P., Xie, N.: The complexity of linear dependence problems in vector spaces. In: ICS, pp. 496–508 (2011)

    Google Scholar 

  8. Jonathan, F.: Buss and Tarique Islam. Algorithms in the W-Hierarchy. Theory Comput. Syst. 41(3), 445–457 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Cattanéo, D., Perdrix, S.: The parameterized complexity of domination-type problems and application to linear codes. CoRR, abs/1209.5267 (2012)

    Google Scholar 

  10. Cesati, M.: Perfect Code is W[1]-complete. Inf. Process. Lett. 81(3), 163–168 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Czumaj, A., Lingas, A.: Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39(2), 431–444 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Structure in Complexity Theory Conference, pp. 36–49 (1992)

    Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci. 326(1-3), 57–67 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Erickson, J.: Lower bounds for linear satisfiability problems. In: SODA, pp. 388–395 (1995)

    Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  17. Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Computational Geometry 5(3), 165–185 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Grønlund, A., Pettie, S.: Threesomes, Degenerates, and Love Triangles. CoRR, abs/1404.0799 (2014)

    Google Scholar 

  19. Hernández-Barrera, A.: Finding an O(n2logn) Algorithm Is Sometimes Hard. In: CCCG, pp. 289–294 (1996)

    Google Scholar 

  20. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: STOC 1977, pp. 1–10. ACM, New York (1977)

    Google Scholar 

  21. Jafargholi, Z., Viola, E.: 3SUM, 3XOR, Triangles. CoRR, abs/1305.3827 (2013)

    Google Scholar 

  22. Nederlof, J., van Leeuwen, E.J., van der Zwaan, R.: Reducing a target interval to a few exact queries. In: MFCS, pp. 718–727 (2012)

    Google Scholar 

  23. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

    MATH  MathSciNet  Google Scholar 

  24. O’Bryant, K.: Sets of integers that do not contain long arithmetic progressions. Electr. J. Comb. 18(1) (2011)

    Google Scholar 

  25. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: STOC, pp. 603–610 (2010)

    Google Scholar 

  26. Pǎtraşcu, M., Williams, R.: On the Possibility of Faster SAT Algorithms. In: SODA, pp. 1065–1075 (2010)

    Google Scholar 

  27. Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical report, 1251-01, LaBRI, Université de Bordeaux I (2001)

    Google Scholar 

  28. Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n3 − delta time, with applications. In: STOC, pp. 225–231 (2006)

    Google Scholar 

  29. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: STOC, pp. 455–464 (2009)

    Google Scholar 

  30. Vassilevska, V., Williams, R., Yuster, R.: Finding the smallest H-subgraph in real weighted graphs and related problems. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 262–273. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abboud, A., Lewi, K., Williams, R. (2014). Losing Weight by Gaining Edges. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)