Game Theoretical Model for Adaptive Intrusion Detection System

  • Jan Stiborek
  • Martin Grill
  • Martin Rehak
  • Karel Bartos
  • Jan Jusko
Chapter

Abstract

We present a self-adaptation mechanism for network intrusion detection system based on the use of game-theoretical formalism. The key innovation of our method is a secure runtime definition and solution of the game and real-time use of game solutions for immediate system reconfiguration. Our approach is suited for realistic environments where we typically lack any ground truth information regarding traffic legitimacy/maliciousness and where the significant portion of system inputs may be shaped by the attacker in order to render the system ineffective. Therefore, we rely on the concept of challenge insertion: we inject a small sample of simulated attacks into the unknown traffic and use the system response to these attacks to define the game structure and utility functions. This approach is also advantageous from the security perspective, as the manipulation of the adaptive process by the attacker is far more difficult.

References

  1. 1.
    Kayacik, H.G., Zincir-Heywood, A.N.: Mimicry attacks demystified: what can attackers do to evade detection? In: Annual Conference on Privacy, Security and Trust, pp. 213–223 (2008)Google Scholar
  2. 2.
    Rubinstein, B.I.P., Nelson, B., Huang, L., Joseph, A.D., Lau, S., Taft, N., Tygar, J.D.: Evading anomaly detection through variance injection attacks on PCA. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 394–395. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  3. 3.
    Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, pp. 16–25. ACM, New York (2006)Google Scholar
  4. 4.
    Rehák, M., Staab, E., Fusenig, V., Pěchouček, M., Grill, M., Stiborek, J., Bartoš, K., Engel, T.: Runtime monitoring and dynamic reconfiguration for intrusion detection systems. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 61–80. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Blum, A., Mansour, Y.: Learning, regret minimization and equilibria. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 79–101. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Alpcan, T., Başar, T.: A game theoretic approach to decision and analysis in network intrusion detection. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, pp. 2595–2600, December 2003Google Scholar
  8. 8.
    Alpcan, T., Başar, T.: An intrusion detection game with limited observations. In: 12th International Symposium on Dynamic Games and Applications, Sophia Antipolis, France, July 2006Google Scholar
  9. 9.
    Liu, Y., Comaniciu, C., Man, H.: A bayesian game approach for intrusion detection in wireless ad hoc networks. In: GameNets ’06: Proceeding from the 2006 Workshop on Game Theory for Communications and Networks, p. 4. ACM, New York (2006)Google Scholar
  10. 10.
    Chen, L., Leneutre, J.: A game theoretical framework on intrusion detection in heterogeneous networks. IEEE Trans. Inf. Forensics Secur. 4(2), 165–178 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhu, Q., Basar, T.: Dynamic policy-based IDS configuration. In: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 8600–8605 (2009)Google Scholar
  12. 12.
    Jain, M., Pita, J., Tambe, M., Ordónez, F., Paruchuri, P., Kraus, S.: Bayesian stackelberg games and their application for security at Los Angeles international airport. SIGecom Exch. 7(2), 1–3 (2008)CrossRefGoogle Scholar
  13. 13.
    Becker, G.S.: Crime and punishment: an economic approach. J. Polit. Econ. 76(2), 169–217 (1968)CrossRefGoogle Scholar
  14. 14.
    Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: eluding network intrusion detection. Technical report, Secure Networks Inc., Suite 330, 1201 5th Street S.W., Calgary, Alberta, Canada, T2R–0Y6 (1998)Google Scholar
  15. 15.
    Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a nash equilibrium. Games Econ. Behav. 63(2), 642–662 (2008)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Wagener, G., State, R., Dulaunoy, A., Engel, T.: Self adaptive high interaction honeypots driven by game theory. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 741–755. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  17. 17.
    Rehak, M., Staab, E., Pechoucek, M., Stiborek, J., Grill, M., Bartos, K.: Dynamic information source selection for intrusion detection systems. In: Decker, K.S., Sichman, J.S., Sierra, C., Castelfranchi, C. (eds.) Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09), IFAAMAS, pp. 1009–1016, May 2009Google Scholar
  18. 18.
    Rehák, M., Pechoucek, M., Grill, M., Stiborek, J., Bartoš, K., Celeda, P.: Adaptive multiagent system for network traffic monitoring. IEEE Intell. Syst. 24(3), 16–25 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jan Stiborek
    • 1
    • 2
  • Martin Grill
    • 1
    • 2
  • Martin Rehak
    • 1
    • 2
  • Karel Bartos
    • 1
    • 2
  • Jan Jusko
    • 1
    • 2
  1. 1.Agent Technology Center, Department of Computer ScienceCzech Technical University in PraguePragueCzech Republic
  2. 2.CISCO Systems, Inc.San JoseUSA

Personalised recommendations