Advertisement

Representation of the Agent Environment for Traffic Behavioral Simulation

  • Feirouz KsontiniEmail author
  • Stéphane Espié
  • Zahia Guessoum
  • René Mandiau
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8670)

Abstract

The aim of this paper is to improve the validity of traffic simulations in (sub-)urban context, with a better consideration of driver behavior in terms of anticipation of positioning on the lanes and occupation of space. We introduce a model based on a multi-agent approach and the emergence concept. This model considers that each driver perceives the situation in an ego-centered way and readapts the road space using the virtual lane concept. We implement the model with the traffic simulation tool ArchiSim. The so obtained simulator intends to reproduce the observed behavior such as filtering between vehicles (two-wheels, emergency vehicles), repositioning on lanes when approaching the road intersections and “exceptional” situations (stranded vehicle or improperly parked, etc.).

Keywords

Multi-agent simulation Road traffic simulation Ego-centered environment representation Virtual lanes 

Notes

Acknowledgements

This research was partially funded by the French Ministry of Education, Research and Technology, the Nord/Pas-de-Calais Region, the CNRS, the International Campus on Safety and Intermodality in Transportation (CISIT). We would like also to thank the anonymous reviewers for their comments.

References

  1. 1.
    Espié, S.: Archisim, multi-actor parallel architecture for traffic simulation. In: Proceedings of the Second World Congress on Intelligent Transport Systems, Yokohama, vol. IV (1995)Google Scholar
  2. 2.
    Ksontini, F., Espié, S., Guessoum, Z., Mandiau, R.: Traffic behavioral simulation in urban and suburban - representation of the drivers’ environment. In: Demazeau, Y., Müller, J.P., Rodríguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 115–125. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Hidas, P.: Modelling lane changing and merging in microscopic traffic simulation. Transp. Res. Part C: Emerg. Technol. 5–6, 351–371 (2002)CrossRefGoogle Scholar
  4. 4.
    El Hadouaj, S.: Conception de comportements de résolution de conflits et de coordination: application à une simulation multi-agent du trafic routier (2004)Google Scholar
  5. 5.
    Dai, J., Li, X.: Multi-agent systems for simulating traffic behaviors. Chin. Sci. Bull. 55, 293–300 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bonte, L., Espié, S., Mathieu, P.: Modélisation et simulation des usagers deux-roues motorisés dans archisim. In: Actes des14e Journées Francophones sur les Systèmes Multi-Agents (JFSMA’06), pp. 31–44 (2006)Google Scholar
  7. 7.
    Lee, T., Polak, J., Bell, M.: New approach to modeling mixed traffic containing motorcycles in urban areas. Transp. Res. Rec. 2140, 195–205 (2009)CrossRefGoogle Scholar
  8. 8.
    Saad, F.: In-depth analysis of interactions between drivers and the road environment: contribution of on-board observations and subsequent verbal report. In: Proceedings of the 4th Workshop of ICTCT, University of Lund (1992)Google Scholar
  9. 9.
    Tornros, J.: Driving behavior in a real and a simulated tunnel - a validation study. Accid. Anal. Prev. 30, 497–503 (1998)CrossRefGoogle Scholar
  10. 10.
    Fitzpatrick, K., Carlson, P., Brewer, M., Wooldridge, M.: Design factors that affect driver speed on suburban streets. Transp. Res. Rec. 1751, 18–25 (2001)CrossRefGoogle Scholar
  11. 11.
    Lewis-Evans, B., Charlton, S.G.: Explicit and implicit processes in behavioural adaptation to road width. Accid. Anal. Prev. 38(3), 610–617 (2006)CrossRefGoogle Scholar
  12. 12.
    Schramm, A., Rakotonirainy, A.: The effect of traffic lane width on the safety of cyclists in urban areas. J. Australisian Coll. Road Saf. 21(2), 43–49 (2010)Google Scholar
  13. 13.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley, Reading (1999)Google Scholar
  14. 14.
    Guessoum, Z., Mandiau, R.: Modèles multi-agents pour des environnements complexes. In: Numéro spécial de la Revue Française d’Intelligence Artificielle (RIA), vol. 21. Hermes (2008)Google Scholar
  15. 15.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Meir, R., Rosenschein, J.: A game theoretic approach to leasing agreements can reduce congestion. In: 6th Workshop on Agents in Traffic and Transportation, Co-Located with the 8th International Joint Conference on Autonomous Agents and Multi-Agent Systems (ATT@AAMAS 2010), Toronto, Canada, pp. 21–27 (2010)Google Scholar
  17. 17.
    Kubicki, S., Lebrun, Y., Lepreux, S., Adam, E., Kolski, C., Mandiau, R.: Simulation in contexts involving an interactive table and tangible objects. Simul. Model. Pract. Theory 31, 116–131 (2013)CrossRefGoogle Scholar
  18. 18.
    Davidsson, P., Henesey, H., Ramstedt, L., Tornquist, J., Wernstedt, F.: Agent-based approaches to transport logistics. In: Application of Agent Technology Traffic and Transportation (ATT 2005), pp. 1–16 (2005)Google Scholar
  19. 19.
    Zeddini, B., Zargayouna, M., Yassine, A.: Space and space-time organization model for the dynamic vrptw. In: 6th Workshop on Agents in Traffic and Transportation, Co-Located with the 8th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2010), Toronto, Canada, pp. 21–27 (2010)Google Scholar
  20. 20.
    Dressner, K., Stone, P.: A multi-agent approach to autonomous intersection management. J. Artif. Intell. Res. 31, 591–656 (2008)Google Scholar
  21. 21.
    Vasirani, M., Ossowski, S.: A computational market for distributed control of urban road traffic systems. IEEE Trans. Intell. Transp. Syst. 12(2), 313–321 (2011)CrossRefGoogle Scholar
  22. 22.
    Bazzan, A.L.C., Wahle, J., Klügl, F.: Agents in traffic modelling - from reactive to social behaviour. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 303–306. Springer, Heidelberg (1999) Google Scholar
  23. 23.
    Bazzan, A.: A distributed approach for coordination of traffic signal agents. Auton. Agent. Multi-Agent Syst. 10(1), 131–164 (2005)CrossRefGoogle Scholar
  24. 24.
    Ehlert, P.A., Rothkrantz, L.J.: Microscopic traffic simulation with reactive driving agents. In: IEEE Intelligent Transportation Systems Conference Proceedings, pp. 861–866 (2001)Google Scholar
  25. 25.
    Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unorganized traffic. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, AAMAS ’02, pp. 176–183. ACM, New York (2002)Google Scholar
  26. 26.
    Doniec, A., Mandiau, R., Piechowiak, S., Espié, S.: Controlling non-normative behaviors by anticipation for autonomous agents. Web Intell. Agent Syst. 6(1), 29–42 (2008)Google Scholar
  27. 27.
    Minh, C.C., Sano, K., Matsumoto, S.: The speed, flow and headway analyses of motorcycle traffic. J. Eastern Asia Soc. Transp. Stud. 6, 1496–1508 (2005)Google Scholar
  28. 28.
    Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator vissim. Fundam. Traffic Simul. Int. Ser. Oper. Res. Manage. Sci. 145, 63–93 (2010)Google Scholar
  29. 29.
    Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 3, pp. 551–596. Elsevier, Amsterdam (2008) CrossRefGoogle Scholar
  30. 30.
    Wang, H., Kearney, J. Cremer, J., Willemsen, P.: Steering behaviors for autonomous vehicles in virtual environments. In: Proceedings of the IEEE Virtual Reality Conference, Bonn, Germany, pp. 155–162 (2005)Google Scholar
  31. 31.
    Doniec, A., Espié, S., Mandiau, R., Piechowiak, S.: Non-normative behaviour in multi-agent system: some experiments in traffic simulation. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), Hong Kong, China, 18–22 December 2006. IEEE Computer Society, pp. 30–36 (2006)Google Scholar
  32. 32.
    Doniec, A., Mandiau, R., Piechowiak, S., Espié, S.: Anticipation based on constraint processing in a multi-agent context. J. Auton. Agent. Multi-Agent Syst. (JAAMAS) 17(2), 339–361 (2008)CrossRefGoogle Scholar
  33. 33.
    Aupetit, S., Espié, S.: Analyse ergonomique de l’activité de conduite moto lors de la pratique de l’inter-files en région parisienne. Activités 9, 48–70 (2012)Google Scholar
  34. 34.
    Ksontini, F., Espié, S., Guessoum, Z., Mandiau, R.: A driver ego-centered environment representation in traffic behavioral simulation. In: Demazeau, Y., Müller, J.P., Rodríguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 249–254. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  35. 35.
    Ksontini, F., Guessoum, Z., Mandiau, R., Espié, S.: Using ego-centered affordances in multi-agent traffic simulation. In Gini, M.L., Shehory, O., Ito, T., Jonker, C.M., eds.: International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, 6–10 May 2013, IFAAMAS, pp. 151–158 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Feirouz Ksontini
    • 1
    • 2
    Email author
  • Stéphane Espié
    • 2
  • Zahia Guessoum
    • 3
  • René Mandiau
    • 1
  1. 1.Université de Valenciennes et du Hainaut Cambrésis - LAMIH CNRS 8201ValenciennesFrance
  2. 2.Université Paris-Est/IFSTTAR/IMChamps-sur-MarneFrance
  3. 3.Université de Paris 6 - LIP6ParisFrance

Personalised recommendations