Understanding the Role of Emotions in Group Dynamics in Emergency Situations

  • Alexei SharpanskykhEmail author
  • Kashif Zia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8670)


Decision making under stressful circumstances, e.g., during evacuation, often involves strong emotions and emotional contagion from others. In this paper the role of emotions in social decision making in large technically assisted crowds is investigated. For this a formal, computational model is proposed, which integrates existing neurological and cognitive theories of affective decision making. Based on this model several variants of a large scale crowd evacuation scenario were simulated. By analysis of the simulation results it was established that (1) human agents supported by personal assistant devices are recognised as leaders in groups emerging in evacuation; (2) spread of emotions in a crowd increases the resistance of agent groups to opinion changes; (3) spread of emotions in a group increases its cohesiveness; (4) emotional influences in and between groups are, however, attenuated by personal assistant devices, when their number is large.


Crowd evacuation Cognitive modelling Ambient intelligence Multi-agent simulation 



One of the authors was supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Program of the Ministry of Economic Affairs.


  1. 1.
    Barton, A.H.: Communities in Disaster: A Sociological Analysis of Collective Stress Situations. Doubleday, Garden City (1969)Google Scholar
  2. 2.
    Bechara, A., Damasio, A.: The somatic marker hypothesis: a neural theory of economic decision. Games Econ. Behav. 52, 336–372 (2004)CrossRefGoogle Scholar
  3. 3.
    Bickle, J.: Psychoneural Reduction: The New Wave. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A language and environment for analysis of dynamics by simulation. Int. J. AI Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  5. 5.
    Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and verification of dynamics in agent models. Int. J. Cooper. Inf. Syst. 18(1), 167–193 (2009)CrossRefGoogle Scholar
  6. 6.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J., van der Wal, C.N., van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agents Multi-Agent Syst. J. 27, 52–84 (2013)CrossRefGoogle Scholar
  7. 7.
    Damasio, A.: The Feeling of What Happens. Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)Google Scholar
  8. 8.
    Damasio, A.: The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Biol. Sci. 351, 1413–1420 (1996)CrossRefGoogle Scholar
  9. 9.
    Damasio, A.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, London (1994)Google Scholar
  10. 10.
    Baillie, P., Lukose, D.: An affective decision making agent architecture using emotion appraisals. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 581–590. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Delgado, M.R., Phelps, E.A., Robbins, T.W.: Decision Making, Affect, and Learning: Attention and Performance XXIII. Oxford University Press, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Eich, E., Kihlstrom, J.F., Bower, G.H., Forgas, J.P., Niedenthal, P.M.: Cognition and Emotion. Oxford University Press, New York (2000)Google Scholar
  13. 13.
    Ferscha, A., Farrahi, K., van den Hoven, J., Hales, D., Nowak, A., Lukowicz, P., Helbing, D.: Socio-inspired ICT - Towards a socially grounded society-ICT symbiosis. Eur. Phys. J. Spec. Top. 214, 401–434 (2012)CrossRefGoogle Scholar
  14. 14.
    Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hebb, D.O.: The Organisation of Behavior. Wiley, New York (1949)Google Scholar
  16. 16.
    Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002)CrossRefGoogle Scholar
  17. 17.
    Hoogendoorn, M., Treur, J., van der Wal, C., van Wissen, A.: Modelling the emergence of group decisions based on mirroring and somatic marking. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS (LNAI), vol. 6334, pp. 29–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Iacoboni, M.: Understanding others: imitation, language, empathy. In: Hurley, S., Chater, N. (eds.) Perspectives on Imitation: From Cognitive Neuroscience to Social Science, vol. 1, pp. 77–100. MIT Press, Perspectives on Imitation: From Cognitive Neuroscience to Social Science, vol. 1, pp. 77–100. MIT Press (2005)Google Scholar
  19. 19.
    Janis, I., Mann, L.: Decision Making: A Psychological Analysis of Conflict, Choice, and Commitment. The Free Press, New York (1977)Google Scholar
  20. 20.
    Kahneman, D., Slovic, P., Tversky, A.: Judgement Under Uncertainty - Heuristics and Biases. Cambridge University Press, Cambridge (1981)Google Scholar
  21. 21.
    Lewin, K.: Group Decision and Social Change. Holt, Rinehart and Winston, New York (1958)Google Scholar
  22. 22.
    Magee, J.C., Tiedens, L.Z.: Emotional ties that bind: the roles of valence and consistency of group emotion in inferences of cohesiveness and common fate. Pers. Soc. Psychol. Bull. 32, 1703–1715 (2006)CrossRefGoogle Scholar
  23. 23.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, New York (1988)CrossRefGoogle Scholar
  24. 24.
    Raven, B.H.: The bases of power: origins and recent developments. J. Soc. Issues 12(49), 227–251 (1992)Google Scholar
  25. 25.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 69–92 (2004)CrossRefGoogle Scholar
  26. 26.
    Saloma, C., Perez, G.J.: Herding in real escape panic. In: Proceedings of the 3rd International Conference on Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2006)Google Scholar
  27. 27.
    Santos, R., Marreiros, G., Ramos, C., Neves, J., Bulas-Cruz, J.: Multi-agent approach for ubiquitous group decision support involving emotions. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp. 1174–1185. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Sharma, S.: Avatarsim. A multi-agent system for emergency evacuation simulation. J. Comput. Methods Sci. Eng. 9(1), 13–22 (2009)Google Scholar
  29. 29.
    Steunebrink, B.R., Dastani, M., Meyer, J.-J.C.: A logic of emotions for intelligent agents. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007). AAAI Press, Menlo Park (2007)Google Scholar
  30. 30.
    Svenson, O., Maule, A.J. (eds.): Time Pressure and Stress in Human Judgment and Decision-Making. Plenum, New York (1993)Google Scholar
  31. 31.
    NetLogo tool. Last accessed Nov 2010
  32. 32.
    Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. W. H. Freeman and Company, New York (2007)Google Scholar
  33. 33.
    Marreiros, G., Santos, R., Ramos, C., Neves, J., Novais, P., Machado, J., Bulas-Cruz, J.: Ambient intelligence in emotion based ubiquitous decision making. In: Augusto, J.C., Shapiro, D. (eds.) Proceedings of the 2nd Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI), pp. 86–91 (2007)Google Scholar
  34. 34.
    Oatley, K., Johnson-Laird, P.N.: Towards a cognitive theory of emotions. Cogn. Emotion 1, 29–50 (1987)CrossRefGoogle Scholar
  35. 35.
    Vastfjall, D., Friman, M., Garling, T., Kleiner, M.: The measurement of core affect: a Swedish self-report measure. Scand. J. Psychol. 43, 19–31 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.COMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations