Advertisement

Considerations on a Lifecycle Model for Cyber-Physical System Platforms

Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 438)

Abstract

Cyber-physical system platforms are information infrastructures connecting different cyber-physical systems and other information systems. This infrastructure is the base for realizing the “Industrie 4.0” paradigm aiming for collaborative industrial processes involving smart objects and smart factories. In inter-organizational value networks, a cyber-physical system platform becomes a shared resource that has to be managed cooperatively along its lifecycle. This paper looks at cyber-physical system platforms from a lifecycle perspective. It describes the complexity of networks of cyber-physical systems and cyber-physical system platforms within value networks and the resulting restrictions influencing their various lifecycles. A selection of different lifecycle models from literature is reviewed to extract aspects that provide a promising basis for the development of a specific lifecycle model of cyber-physical system platforms.

Keywords

Shared Resources Industrie 4.0 Lifecycle Management Shared Information Systems Cyber-physical System Platform 

References

  1. 1.
    Broy, M.: Cyber-Physical Systems: Wissenschaftliche Herausforderungen bei der Entwicklung. In: Broy, M. (ed.) Cyber-Physical Systems: Innovation Durch Software-Intensive Eingebettete Systeme, pp. 17–31. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Kagermann, H., Wahlster, W., Helbig, J. (eds.): Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0: Abschlussbericht des Arbeitskreises Industrie 4.0. acatech – National Academy of Science and Engineering, Munich (2013)Google Scholar
  3. 3.
    Pöppelbuß, J., Teucke, M., Werthmann, D., Freitag, M.: Managing the Life Cycle of IT-Based Inter-firm Resources in Production and Logistics Networks. In: Kotzab, H., Thoben, K.D., Pannek, J. (eds.) Proceedings of the Fourth International Conference, LDIC 2014. Springer, Heidelberg (in print, 2014)Google Scholar
  4. 4.
    Schönberger, J., Kopfer, H., Kotzab, H.: A micro- and macro-economic view on shared resources in logistics. In: Kotzab, H., Thoben, K.-D., Pannek, J. (eds.) Proceedings of the Fourth International Conference, LDIC 2014 (Lecture Notes in Logistics), Bremen, Germany, Springer, Heidelberg (in print 2014)Google Scholar
  5. 5.
    Diemer, J.: Sichere Industrie 4.0-Plattform auf Basis von Community-Clouds. In: Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, Springer, Vieweg (2014)Google Scholar
  6. 6.
    EPCglobal Inc. EPC Information Services (EPCIS) Version 1.0.1 Specification,http://www.gs1.org/gsmp/kc/epcglobal/epcis/epcis_1_0_1-standard-20070921.pdf
  7. 7.
    Lepratti, R., Lamparter, S., Schröder, R.: Transparenz in globalen Lieferketten der Automobilindustrie: Ansätze zur Logistik- und Produktionsoptimierung. Publicis Publishing, Erlangen (in print 2014)Google Scholar
  8. 8.
    Future Internet Technologies for MANufacturing industries (FITMAN): http://www.fitman-fi.eu/, http://www.fitman-fi.eu/
  9. 9.
    The European Factories of the Future Research Association (EFFRA), http://www.effra.eu/
  10. 10.
  11. 11.
    The Industrial Internet Consortium: A Nonprofit Partnership Of Industry, Government And Academia, http://www.iiconsortium.org/about-us.htm
  12. 12.
    Hülsmann, M., Windt, K.: Changing Paradigms in Logistics – Understanding the Shift from Conventional Control to Autonomous Cooperation and Control. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation & Control: The Impact of Autonomy on Management, Information, Communication, and Material Flow, pp. 1–16. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Pigosso, D.C., Zanette, E.T., Filho, A.G., Ometto, A.R., Rozenfeld, H.: Ecodesign methods focused on remanufacturing. J. Clean. Prod. 18(1), 21–31 (2010)CrossRefGoogle Scholar
  14. 14.
    Ranasinghe, D.C., Harrison, M., Främling, K., McFarlane, D.: Enabling through life product-instance management: Solutions and challenges. J. Netw. Comput. Appl. 34(3), 1015–1031 (2011)CrossRefGoogle Scholar
  15. 15.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the Internet of things. Comput. Aided Des. 43(5), 479–501 (2011)CrossRefGoogle Scholar
  16. 16.
    Kovacs, G., Kopacsi, S., Haidegger, G., Michelini, R.: Ambient intelligence in product lifecycle management. Eng. Appl. Artif. Intell. 19(8), 953–965 (2006)CrossRefGoogle Scholar
  17. 17.
    Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance. Simon and Schuster, New York (2008)Google Scholar
  18. 18.
    ISO/IEC/IEEE: Standard for Systems and Software Engineering: Software Life Cycle Processes, IEEE STD 12207-2008, pp. 1–138. Geneva, New Jersey (2008)Google Scholar
  19. 19.
    Levitt, T.: Exploit the Product Life Cycle, http://hbr.org/1965/11/exploit-the-product-lifecycle/ar/1
  20. 20.
    Thoben, K.-D., Jagdev, H.S.: Typological issues in enterprise networks. Prod. Plan. Control 12(5), 421–436 (2001)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  1. 1.BIBA – Bremer Institut für Produktion und LogistikBremenGermany
  2. 2.University of BremenGermany
  3. 3.Industrial Services GroupUniversity of BremenBremenGermany

Personalised recommendations