An Approach to Increase Energy Efficiency Using Shutdown and Standby Machine Modes

  • Apostolos Fysikopoulos
  • Georgios Pastras
  • Aikaterini Vlachou
  • George Chryssolouris
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 439)

Abstract

Energy efficiency constitutes a very significant factor that requires its inclusion in the manufacturing decision making attributes developing a strategy to produce more with less. The idle state of a machine tool is an inefficient phase. A strategy to increase the energy efficiency of an already balanced production line, using machine tool stand-by or shut-down modes, during the idle phase, is being introduced. This strategy identifies when the application of such modes is gainful from an energy efficiency point of view, based on the available idle time and the consumption of the machine at these modes.

Keywords

Energy Efficiency Sustainable Manufacturing Machine Tools Production Planning Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Energy Agency.: Worldwide Trends in Energy Use and Efficiency (2008)Google Scholar
  2. 2.
    Energy Information Administration.: Annual Energy Review (2011)Google Scholar
  3. 3.
    International Energy Agency.: World Energy Outlook (2012)Google Scholar
  4. 4.
    Fysikopoulos, A., Papacharalampopoulos, A., Pastras, G., Stavropoulos, P., Chryssolouris, G.: Energy Efficiency of Manufacturing Processes: A Critical Review. In: Procedia CIRP 2013, vol. 7, pp. 628–633 (2013)Google Scholar
  5. 5.
    Seow, Y., Rahimifard, S.: A framework for modelling energy consumption within manufacturing systems. CIRP J. Manuf. Sci. Technol. 4(3), 258–264 (2011)CrossRefGoogle Scholar
  6. 6.
    Moreno, B., López, A.J., García-Álvarez, M.T.: The electricity prices in the European Union. The Role of Renewable Energies and Regulatory Electric Market Reforms 48(1), 307–313 (2012)Google Scholar
  7. 7.
    Chryssolouris, G., Papakostas, N., Mavrikios, D.: A perspective on manufacturing strategy: Produce more with less. CIRP J. Manuf. Sci. Tech. 1(1), 45–52 (2008)CrossRefGoogle Scholar
  8. 8.
    International Energy Agency, Tracking Industrial Energy Efficiency and CO2 Emissions (2007)Google Scholar
  9. 9.
    Directive 2009/125/EC of the European Parliament and of the Council of 21, establishing a framework for the setting of ecodesign requirements for energy-related products. Off. J. Eur. Union, 10–35( (October 2009)Google Scholar
  10. 10.
    Cooperative Effort on Process Emissions in Manufacturing CO2PE!, http://www.mech.kuleuven.be/co2pe/index.php (accessed: April 23, 2014)
  11. 11.
    CIRP Collaborative Working Group.: Energy and Resource Efficiency & Effectiveness, http://www.cirp-eree.iwf.tu-bs.de (accessed: April 23, 2014)
  12. 12.
    Bruzzone, A.A.G., Anghinolfi, D., Paolucci, M., Tonelli, F.: Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Ann. - Manuf. Technol. 61(1), 459–462 (2012)CrossRefGoogle Scholar
  13. 13.
    Schlosser, R., Klocke, F., Lung, D.: Sustainabilty in Manufacturing: Energy Consumption of Cutting Processes. In: Advances in Sustainable Manufacturing, pp. 85–89 (2001)Google Scholar
  14. 14.
    Herrmann, C., Kara, S., Thiede, S., Luger, T.: Energy Efficiency in Manufacturing: Perspectives from Australia and EuropeGoogle Scholar
  15. 15.
    Chryssolouris, G.: Manufacturing systems: theory and practice, 2nd edn. Springer (2006)Google Scholar
  16. 16.
    Fysikopoulos, A., Anagnostakis, D., Salonitis, D., Chryssolouris, G.: An Empirical Study of the Energy Consumption in Automotive Assembly. In: Procedia CIRP, vol. 3, pp. 477–482 (2012)Google Scholar
  17. 17.
    Nilsson, K., Soderstrom, N.: Industrial Applications of Production Planning with Optimal Electricity Demand. Appl. Energy 46(2), 181–192 (1993)CrossRefGoogle Scholar
  18. 18.
    Yusta, J.M., Torres, F., Khodr, H.M.: Optimal methodology for a machining process scheduling in spot electricity markets. Energy Convers. Manag. 51(12), 2647–2654 (2010)CrossRefGoogle Scholar
  19. 19.
    Moon, J.Y., Shin, K., Jinwoo, P.: Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. Adv. Manuf. Technol. 68, 523–535 (2013)CrossRefGoogle Scholar
  20. 20.
    Herrmann, C., Thiede, S., Kara, S., Hesselbach, J.: Energy oriented simulation of manufacturing systems – Concept and application. In: CIRP Ann. - Manuf. Technol., vol. 60(1), pp. 45–48 (2011)Google Scholar
  21. 21.
    Thiede, S., Seow, Y., Andersson, J., Johansson, B.: Environmental aspects in manufacturing system modelling and simulation: State of the art and research perspectives. In: CIRP J. Manuf. Sci. Technol., vol. 6(1), pp. 78–87 (2013)Google Scholar
  22. 22.
    Wohlgemuth, V., Page, B., Kreutzer, W.: Combining discrete event simulation and material flow analysis in a component-based approach to industrial environmental protection. Environ. Model. Softw. 21, 1607–1617 (2006)CrossRefGoogle Scholar
  23. 23.
    Johansson, B., Skoogh, A., Mani, M., Leong, S.: Discrete event simulation to generate requirements specification for sustainable manufacturing systems design. In: Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems, pp. 38–42 (2009)Google Scholar
  24. 24.
    Mouzon, G., Yildirim, M.V., Twomey, J.: Operational methods for minimization of energy consumption of manufacturing equipment. Int. J. Prod. Res. 45, 37–41 (2007)Google Scholar
  25. 25.
    Yin, R., Cao, H., Li, H., Sutherland, J.W.: A Process Planning Method for Reduced Carbon Emissions. Int. J. Comput. Integr. Manuf., 1–17 (2013)Google Scholar
  26. 26.
    Sheng, P., Srinivasan, M., Kobayashi, S.: Multi-Objective Process Planning in Environmentally Conscious Manufacturing: A Feature-Based Approach. CIRP Ann. - Manuf. Technol. 44(1), 433–437 (1995)CrossRefGoogle Scholar
  27. 27.
    Tan, X.C., Liu, F., Liu, D.C., Zheng, L., Wang, H.Y., Zhang, Y.H.: Research on the diagnosis and improvement method of a process route in an enterprise production process in terms of sustainable development III. Int. J. Adv. Manuf. Technol. 33(11-12), 1256–1262 (2006)CrossRefGoogle Scholar
  28. 28.
    Srinivasan, M., Sheng, P.: Feature-based process planning for environmentally conscious machining: Part 1: micro planning. Rob. Com. Int. Man. 15, 257–270 (1999)CrossRefGoogle Scholar
  29. 29.
    Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Hauschild, M., Kellens, K.: Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Ann.-Man. Tech. 61, 587–609 (2012)CrossRefGoogle Scholar
  30. 30.
    Fysikopoulos, A., Stavropoulos, P., Salonitis, K., Chryssolouris, G.: Energy Efficiency Assessment of Laser Drilling Process. Phys. Procedia 39, 776–783 (2012)CrossRefGoogle Scholar
  31. 31.
    Matta, A., Frigerio, N.: Machine Control Policies for Energy Saving in Manufacturing. In: Proc. of the 2013 IEEE CASE, Madison, Wisconsin, USA, pp. 663–668 (2013)Google Scholar
  32. 32.
    Drake, R., Yildirim, M.B., Twomey, J., Bayram, M., Whitman, L., Ahmad, J., Lodhia, P.: Data Collection Framework on Energy Consumption in Manufacturing, Wichita State Univ. Libr. SOAR Shock. Open Access Repos. (2006)Google Scholar
  33. 33.
    Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., Sheng, P., Sutherland, J., Thurston, D., Wolff, E.: Environmentally benign manufacturing: Observations from Japan, Europe and the United States. J. Clean. Prod. 13, 1–17 (2005)CrossRefGoogle Scholar
  34. 34.
    Neugebauer, R., Wabner, M., Rentzsch, H., Ihlenfeldt, S.: Structure principles of energy efficient machine tools. CIRP J. Manuf. Sci. Tech. 4(2), 136–147 (2011)CrossRefGoogle Scholar
  35. 35.
    Kara, S., Manmek, S., Herrmann, C.: Global manufacturing and the embodied energy of products. CIRP Ann. - Manuf. Technol. 59(1), 29–32 (2010)CrossRefGoogle Scholar
  36. 36.
    ENEPLAN: Energy Efficienct Process pLAnning system. The seventh framework program - FoF.NMP.2011-1: The Eco-Factory: cleaner and more resource-efficient production in manufacturing Program, http://www.eneplan.eu/
  37. 37.
    Li, W., Winter, M., Kara, S., Herrmann, S.: Eco-efficiency of manufacturing processes: A grinding case. CIRP Ann. - Manuf. Technol. 61(1), 59–62 (2012)CrossRefGoogle Scholar
  38. 38.
    Mori, M., Fujishima, M., Inamasu, Y., Oda, Y.: A study on energy efficiency improvement for machine tools. CIRP Ann. - Manuf. Technol. 60, 145–148 (2011)CrossRefGoogle Scholar
  39. 39.
    SIEMENS AG.: Energieeffiziente Werkzeugmaschinen mit Sinumerik Ctrl-Energy von Siemens sind sparsam und produktiv (2011), http://www.siemens.com/press/de/pressemitteilungen/?press=/de/pre
  40. 40.
    Gildemeister, A.: DMG MORI (2012), http://en.dmgmoriseiki.com/sites/en/
  41. 41.
    Eberspächer, P., Verl, A.: Realizing energy reduction of machine tools through a control- integrated consumption graph-based optimization method. Procedia CIRP (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Apostolos Fysikopoulos
    • 1
  • Georgios Pastras
    • 1
  • Aikaterini Vlachou
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations