Eye Blink Artifact Removal in EEG Using Tensor Decomposition

  • Dimitrios Triantafyllopoulos
  • Vasileios Megalooikonomou
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 437)


EEG data are usually contaminated with signals related to subject’s activities, the so called artifacts, which degrade the information contained in recordings. The removal of this additional information is essential to the improvement of EEG signals’ interpretation. The proposed method is based on the analysis, using Tucker decomposition, of a tensor constructed using continuous wavelet transform. Our contribution is an automatic method which processes simultaneously spatial, temporal and frequency information contained in EEG recordings in order to remove eye blink related information. The proposed method is compared with a matrix based removal method and shows promising results regarding reconstruction error and retaining the texture of the artifact free signal.


eye blink Tucker decomposition wavelet transform EEG 


  1. 1.
    Ochoa, C.J., Polich, J.: P300 and blink instructions. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 111(1), 93–98 (2000), (retrieved)
  2. 2.
    Verleger, R.: The instruction to refrain from blinking affects auditory P3 and N1 amplitudes. Electroencephalography and Clinical Neurophysiology 78(3), 240–251 (1991), (retrieved)
  3. 3.
    Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4), 1443–1449 (2007), doi:10.1016/j.neuroimage.2006.11.004CrossRefGoogle Scholar
  4. 4.
    Chadwick, N., McMeekin, D., Tele, T.: Classifying eye and head movement artifacts in EEG Signals. In: Digital Ecosystems and Technologies Conference (DEST), vol. 5, pp. 285–291 (2011), (retrieved)
  5. 5.
    Lawhern, V., Hairston, W.D., McDowell, K., Westerfield, M., Robbins, K.: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods 208(2), 181–189 (2012), doi:10.1016/j.jneumeth(2012).05.017CrossRefGoogle Scholar
  6. 6.
    Wu, J., Zhang, J., Yao, L.: An automated detection and correction method of EOG artifacts in EEG-based BCI. Complex Medical Engineering 100875, 1–5 (2009), doi:10.1109/ICCME(2009).4906624Google Scholar
  7. 7.
    De Clercq, W., Vergult, A.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. Biomedical Engineering 53(5), 2583–2587 (2006), doi:10.1109/TBME.2006.879459Google Scholar
  8. 8.
    Vergult, A., De Clercq, W., Palmini, A., Vanrumste, B., Dupont, P., Van Huffel, S., Van Paesschen, W.: Improving the interpretation of ictal scalp EEG: BSS-CCA algorithm for muscle artifact removal. Epilepsia 48(5), 950–958 (2007), doi:10.1111/j.1528-1167.2007.01031.xCrossRefGoogle Scholar
  9. 9.
    Halder, S., Bensch, M., Mellinger, J., Bogdan, M., Kübler, A., Birbaumer, N., Rosenstiel, W.: Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Computational Intelligence and Neuroscience 10 (2007), doi:10.1155/2007/82069Google Scholar
  10. 10.
    Mammone, N., la Foresta, F., Marabito, F.C.: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sensors Journal 12(3), 533–542 (2012), doi:10.1109/JSEN.2011.2115236CrossRefGoogle Scholar
  11. 11.
    Sheng, H., Tian, H.: A Novel Method to Remove Eye-Blink Artifacts Based on Correlation Using ICA. In: Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1946–1948. IEEE Computer Society Press (2013), doi:10.1109/GreenCom-iThings-CPSCom.2013.362Google Scholar
  12. 12.
    Heute, U., Guzman, A.: Removing “cleaned” eye-blinking artifacts from EEG measurements. Signal Processing and Integrated …, 576–580 (2014), (retrieved)
  13. 13.
    Miwakeichi, F., Martínez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis. NeuroImage 22(3), 1035–1045 (2004), doi:10.1016/j.neuroimage.2004.03.039CrossRefGoogle Scholar
  14. 14.
    Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29(3), 938–947 (2006), doi:10.1016/j.neuroimage.2005.08.005CrossRefGoogle Scholar
  15. 15.
    Acar, E., Bingöl, C.A., Bingöl, H., Yener, B.: Computational analysis of epileptic focus localization. In: Ruggiero, C. (ed.) Proceedings of the 24th IASTED International Conference on Biomedical Engineering (BioMed 2006), pp. 317–322. ACTA Press, Anaheim (2006)Google Scholar
  16. 16.
    Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics s 23(13), i10-8 (2007), doi:10.1093/bioinformatics/btm210Google Scholar
  17. 17.
    Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Review 51(3), 455–500 (2009), doi:10.1137/07070111XMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harshman, R.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis  (10), 1–84 (1970)Google Scholar
  19. 19.
    Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35 (1970), (retreived)
  20. 20.
    Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press, Madison (1963)Google Scholar
  21. 21.
    Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products (1927)Google Scholar
  22. 22.
    Cattell, R.B.: Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika 9(4), 267–283 (1944)CrossRefGoogle Scholar
  23. 23.
    Bader, B.W., Kolda, T.G.: MATLAB Tensor Toolbox Version 2.5., (accessed)

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Dimitrios Triantafyllopoulos
    • 1
  • Vasileios Megalooikonomou
    • 1
  1. 1.Multidimensional Data Analysis and Knowledge Management Laboratory, Dept. of Computer Engineering and InformaticsUniversity of PatrasRion-PatrasGreece

Personalised recommendations