Photocatalytic Pavements

  • Joel K. Sikkema
  • James E. Alleman
  • Tom Cackler
  • Peter C. Taylor
  • Ben Bai
  • Say-Kee Ong
  • Kasthurirangan Gopalakrishnan
Part of the Green Energy and Technology book series (GREEN)


Pavements which have been blended, coated, sprayed, etc., with photocatalytic TiO2 additives have attracted world-wide interest during the past decade-plus period based on their environmentally beneficial abilities to provide reactive (i.e., ‘smog-eating pavement’ plus ‘self-cleaning’) and reflective (i.e., ‘cool pavement’) impacts. The former ‘reactive’ capabilities notably involve a de-polluting property where TiO2 irradiation with UV-A spectrum light is able to oxidatively convert a variety of problematic organic and inorganic pollutants within both atmospheric and aqueous runoff zones. This suite of transportation-generated amenable contaminants notably includes NOX residuals which otherwise represent a serious environmental and human-health challenge within high traffic density, inner-urban highway locations with high-density adjacent resident populations. Multiple laboratory-level photo-reactor studies published over the past several decades have demonstrated this photocatalytic NOX-removal capability, while at the same time scientifically exploring and elucidating key relationships between NOX abatement and various environmental factors (e.g., light wavelength and intensity, ambient relative humidity and surface moisture, pavement temperature, surface soiling impacts, etc.). Field monitoring, albeit in more limited fashion, has provided similarly supportive findings at a number of locations involving not only TiO2-bearing pavements but also locations paved with blocks, pavers, bricks, etc. which have been sprayed or coated with TiO2-enriched admixtures. This chapter, therefore, provides an overview of the related literature covering academic, industrial, patent, and related perspectives and both experimental and full-scale findings. While this existing body of knowledge is substantial, complementary conclusions are also provided regarding recommendations for additional research which appears warranted to pragmatically strengthen the future understanding of TiO2-related pavement performance.


Photocatalytic Activity Selective Catalytic Reduction TiO2 Particle Street Canyon Photocatalytic Oxidation 



The authors wish to thank the National Concrete Pavement Technology Center, the United States Department of Transportation, Essroc (Italcementi Group), and Lehigh Hanson, Inc. (Heidelberg Cement Group) for providing funding to pursue this review. In addition, the authors are grateful for in-kind services provided by the Missouri Department of Transportation and Fred Weber, Inc.


  1. Amadelli, R., Cassar, L., & Pepe, C. (2004). U.S. Patent No. 6,824,826.Google Scholar
  2. Ancora, R., Borsa, M., & Cassar, L. (2012). U.S. Patent No. 8,092,586.Google Scholar
  3. Asadi, S., Hassan, M. M., Kevern, J. T., & Rupnow, T. (2012). Development of Photocatalytic Pervious Concrete Pavement for Air and Stormwater Improvements. Transportation Research Record.Google Scholar
  4. Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2009). Heterogeneous photocatalysis applied to concrete pavement for air remediation. Nanotechnology in Construction 3, Proceedings, (pp. 409–414).Google Scholar
  5. Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2010). NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Applied Catalysis B-Environmental, 95(3–4), 245–254. doi: 10.1016/j.apcatb.2010.01.002.CrossRefGoogle Scholar
  6. Ballari, M. M., Yu, Q. L., & Brouwers, H. J. H. (2011). Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catalysis Today, 161(1), 175–180. doi: 10.1016/j.cattod.2010.09.028.CrossRefGoogle Scholar
  7. Barmpass, P., Moussiopoulos, N., & Vlahocostas, C. (2006). De-pollution prediction tool and integrated economic assessment PICADA Project.Google Scholar
  8. Beeldens, A. (2007, October 8–9). Air purification by road materials: results of the test project in antwerp. Paper presented at the International RILEM Symposium on Photocatalysis, Environment and Construction Materials—TDP 2007, Florence, Italy.Google Scholar
  9. Beeldens, A. (2008). Air purification by pavement blocks: final results of the research at the BRRC. Slovenia: Ljubljana.Google Scholar
  10. Beeldens, A., & Boonen, E. (2012). A double layered photocatalytic concrete pavement: a durable application with air-purifying properties. Paper presented at the 10th International Conference on Concrete Pavements, Quebec City, Canada.Google Scholar
  11. Beeldens, A., Cassar, L., & Murata, Y. (2011). Applications of TiO2 photocatalysis for air purification. In Y. Ohama & D. Van Gemert (Eds.), Application of titanium dioxide photocatalysis to construction materials (1st ed.). Berlin: SpringerGoogle Scholar
  12. Berdahl, P., & Akbari, H. (2007). Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants.Google Scholar
  13. Bigi, A., & Harrison, R. M. (2010). Analysis of the air pollution climate at a central urban background site. Atmospheric Environment, 44(16), 2004–2012. doi: 10.1016/j.atmosenv.2010.02.028.CrossRefGoogle Scholar
  14. Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fischer, P. H., Wijga, A. et al. (2002). Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. American Journal of Respiratory and Critical Care Medicine, 166(8), 1092–1098. doi: 10.1164/rccm.200108-007OC.
  15. Brunekreef, B., Janssen, N. A. H., deHartog, J., Harssema, H., Knape, M., & vanVliet, P. (1997). Air pollution from truck traffic and lung function in children living near motorways. Epidemiology, 8(3), 298–303.CrossRefGoogle Scholar
  16. Cable, J. K., & Frentress, D. P. (2004). Two-Life Portland Cement Concrete Pavements to Meet Public Needs. Ames, IA: Center for Portland Cement Concrete Pavement Technology.Google Scholar
  17. Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. [Review]. Progress in Solid State Chemistry, 32(1–2), 33–177. doi: 10.1016/j.progsolidstchem.2004.08.001.CrossRefGoogle Scholar
  18. Cassar, L., & Pepe, C. (2000). U.S. Patent No. 6,117,229.Google Scholar
  19. Casar, L., & Pepe, C. (2002a). U.S. Patent No. 6,406,536.Google Scholar
  20. Cassar, L., & Pepe, C. (2002b). U.S. Patent No. 6,409,821.Google Scholar
  21. Cassar, L. (2004). Photocatalysis of cementitious materials: Clean buildings and clean air. [Article]. MRS Bulletin, 29(5), 328–331.CrossRefGoogle Scholar
  22. Cassar, L., & Pepe, C. (2010). European Patent No. 1,600,430.Google Scholar
  23. Cassar, L., Cucitore, R., & Pepe, C. (2011). U.S. Patent No. 7,960,042.Google Scholar
  24. Chen, M., & Chu, J. W. (2011). NO(x) photocatalytic degradation on active concrete road surface—from experiment to real-scale application. Journal of Cleaner Production, 19(11), 1266–1272. doi: 10.1016/j.jclepro.2011.03.001.CrossRefGoogle Scholar
  25. City Concept. (2004). D-NOx: The concrete paving block for atmospheric purification. Tessenderlo, Belgium.Google Scholar
  26. Clean Air Act (2008). 42 U.S.C. § 7401 et seq.Google Scholar
  27. Control of emissions from new and in-use highway vehicles and engines, 40 C.F.R. pt. 86.007-11 (2008).Google Scholar
  28. Crispino, M., & Vismara, S. (2010). Innovative Photocatalytic Pavements Presentation at International Sustainable Pavements Workshop. VA: Airie.Google Scholar
  29. Cucitore, R., Cangiano, S., & Cassar, L. (2011). U.S. Patent No. 8,039,100.Google Scholar
  30. Dalton, J. S., Janes, P. A., Jones, N. G., Nicholson, J. A., Hallam, K. R., & Allen, G. C. (2002). Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 120(2), 415–422. doi: 10.1016/s0269-7491(02)00107-0.CrossRefGoogle Scholar
  31. Demeestere, K., Dewulf, J., De Witte, B., Beeldens, A., & Van Langenhove, H. (2008). Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Building and Environment, 43(4), 406–414. doi: 10.1016/j.buildenv.2007.01.016.CrossRefGoogle Scholar
  32. Dylla, H., Hassan, M. M., Mohammad, L. N., Rupnow, T., & Wright, E. (2010). Evaluation of environmental effectiveness of titanium dioxide photocatalyst coating for concrete pavement. Transportation Research Record: Journal of the Transportation Research Board, 2164(-1), 46–51. doi: 10.3141/2164-06.
  33. Dylla, H., Hassan, M. M., Schmitt, M., Rupnow, T., & Mohammad, L. N. (2011a). Laboratory Investigation of the Effect of Mixed Nitrogen Dioxide and Nitrogen Oxide Gases on Titanium Dioxide Photocatalytic Efficiency in Concrete Pavements. Journal of Materials in Civil Engineering, 23(7), 1087–1093. doi: 10.1061/(asce)mt.1943-5533.0000248.CrossRefGoogle Scholar
  34. Dylla, H., Hassan, M. M., Schmitt, M., Rupnow, T., Mohammad, L. N., & Wright, E. (2011). Effects of roadway contaminants on titanium dioxide photodegradation of NOx. Paper presented at the Transportation Research Board 90th Annual Meeting, Washington, DC.Google Scholar
  35. Essroc. (2008). LEED-NC ® 2.2 Guide: Using TX Arca® and TX Aria® Photocatalytic Cements for New Construction and Major Renovations Nazareth, PA.Google Scholar
  36. FHWA (2011). Our Nation’s Highways: Highway Finance Data Collection, Office of Highway Policy Information, Federal Highway Administration (FHWA), Washington, D.C. Available online: Accessed 28 Aug 2014.
  37. Finkelstein, M. M., Jerrett, M., & Sears, M. R. (2004). Traffic air pollution and mortality rate advancement periods. American Journal of Epidemiology, 160(2), 173–177. doi: 10.1093/Aje/Kwh181.
  38. Frank, S. N., & Bard, A. J. (1977). Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous-Solutions at Tio2 Powder. Journal of the American Chemical Society, 99(1), 303–304.CrossRefGoogle Scholar
  39. Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO2 photo catalysis: fundamentals and applications. Tokyo: BKC Inc.Google Scholar
  40. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. [doi: 10.1038/238037a0]. Nature, 238(5358), 37–38.
  41. Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21. doi: 10.1016/s1389-5567(00)00002-2.CrossRefGoogle Scholar
  42. Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5–6), 750–760. doi: 10.1016/j.crci.2005.02.055.
  43. Fujishima, A., Zhang, X. T., & Tryk, D. A. (2008). TiO(2) photocatalysis and related surface phenomena. [Review]. Surface Science Reports, 63(12), 515–582. doi: 10.1016/j.surfrep.2008.10.001.
  44. Garshick, E., Laden, F., Hart, J. E., & Caron, A. (2003). Residence near a major road and respiratory symptoms in US veterans. Epidemiology, 14(6), 728–736. doi: 10.1097/01.ede.0000082045.50073.66.
  45. Gignoux, L., Christory, J. P., & Petit, J. F. (2010). Concrete roadways and air quality—Assessment of trials in Vanes in the hear of the Paris region. Paper presented at the 12th International Symposium on Concrete Raods, Sevilla Spain.Google Scholar
  46. Goodeve, C. F., & Kitchener, J. A. (1938). Photosensitisation by titanium dioxide. Transactions of the Faraday Society, 34, 570–579.CrossRefGoogle Scholar
  47. Grant, R. H., & Slusser, J. R. (2005). Estimation of ultraviolet-A irradiance from measurements of 368-nm spectral irradiance. Journal of Atmospheric and Oceanic Technology, 22(12), 1853–1863. doi: 10.1175/jtech1823.1.CrossRefGoogle Scholar
  48. Guerrini, G. L. (2012). U.S. Patent No. 20,120,270,721.Google Scholar
  49. Guerrini, G. L., & Peccati, E. (2007, October 8–9). Photocatalytic cementitious roads for depollution. Paper presented at the International RILEM Symposium on Photocatalysis, Environment and Construction Materials—TDP 2007, Florence, Italy.Google Scholar
  50. Hall, K., Dawood, D., Vanikar, S., Tally, R., Cackler, T., Correa, A. et al. (2007). Long-Life Concrete PAvements in Europe and Canda: Federal Highway Administration.Google Scholar
  51. Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO 2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 44(12), 8269–8285.CrossRefGoogle Scholar
  52. Hassan, M. M., Dylla, H., Mohammad, L. N., & Rupnow, T. (2010a, April). Durability of titanium dioxide photocatalytic layer for pavement surfaces. Paper presented at the 46th Annual Conference of the Associated Schools of Construction, Boston, Massachusetts.Google Scholar
  53. Hassan, M. M., Dylla, H., Mohammad, L. N., & Rupnow, T. (2010b). Effect of application methods on the effectiveness of titanium dioxide as a photocatalyst compound to concrete pavement. Paper presented at the Transportation Research Board 89th Annual Meeting, Washington, D.C.Google Scholar
  54. Hassan, M. M., Dylla, H., Mohammad, L. N., & Rupnow, T. (2010b). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Construction and Building Materials, 24(8), 1456–1461. doi: 10.1016/j.conbuildmat.2010.01.009.CrossRefGoogle Scholar
  55. Hassan, M. M., & Okeil, A. (2011). Field and laboratory investigation of photocatalytic pavements: Final report. Baton Rouge, LA: Gulf Coast REsearch Center for Evacuation and Transportation Resiliency.Google Scholar
  56. Herrmann, J. M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115–129.CrossRefGoogle Scholar
  57. Herrmann, J. M., Péruchon, L., Puzenat, E., & Guillard, C. (2007, October 8–9). Photocatalysis: From fundamentals to self-cleaning glass applications. Paper presented at the International RILEM Symposium on Photocatalysis, Environment and Construction Materials—TDP 2007, Florence, Italy.Google Scholar
  58. Hüsken, G., & Brouwers, H. J. H. (2008, June 16–20). Air purification by cementitious materials: Evaluation of air purifying properties. Paper presented at the International Conference on Construction and Building Technology, Kuala Lumpur, Malaysia.Google Scholar
  59. Husken, G., Hunger, M., & Brouwers, H. J. H. (2009). Experimental study of photocatalytic concrete products for air purification. Building and Environment, 44(12), 2463–2474. doi: 10.1016/j.buildenv.2009.04.010.CrossRefGoogle Scholar
  60. Hüsken, G., Hunger, M., & Brouwers, H. J. H. (2009). Experimental study of photocatalytic concrete products for air purification. Building and Environment, 44(12), 2463–2474. doi: 10.1016/j.buildenv.2009.04.010.CrossRefGoogle Scholar
  61. Hwang, S., Lee, M. C., & Choi, W. (2003). Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: kinetics and mechanism. Applied Catalysis B-Environmental, 46(1), 49–63. doi: 10.1016/s0926-3373(03)00162-0.CrossRefGoogle Scholar
  62. Ibusuki, T., & Takeuchi, K. (1994). Removal of low concentration nitrogen-oxides through photo assisted heterogeneous catalysis. Journal of Molecular Catalysis, 88(1), 93–102. doi: 10.1016/0304-5102(93)e0247-e.CrossRefGoogle Scholar
  63. ISO. (2007). Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for air-purification performance of semiconducting photocatalytic materials—Part 1: Removal of nitric oxide (Vol. 22197-1:2007): ISO.Google Scholar
  64. Italcementi. (2006). TX Active by Italcementi. Bergamo, Italy.Google Scholar
  65. Italcementi. (2009). TX active, The photocatalytic active principle, Technical report. Bergamo, ItalyGoogle Scholar
  66. Jacoby, W. A., Blake, D. M., Noble, R. D., & Koval, C. A. (1995). Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis, 157(1), 87–96. doi: 10.1006/jcat.1995.1270.CrossRefGoogle Scholar
  67. JIS. (2010). Fine ceramics (advanced ceramics, advanced technical ceramics)–Test method for air-purification performance of semiconducting photocatalytic materials–Part 1: Removal of nitric oxide. (JIS R 1701-1:2010). Tokyo, Japan.Google Scholar
  68. Kat, S., & Masou, F. (1964). Kogyo Kagaku Zasshi, 67, 1136.CrossRefGoogle Scholar
  69. Keidel, E. (1929). Farben-zeitung, 34, 1242.Google Scholar
  70. Kim, J. J., Smorodinsky, S., Lipsett, M., Singer, B. C., Hodgson, A. T., & Ostro, B. (2004). Traffic-related air pollution near busy roads—The East Bay children’s respiratory health study. American Journal of Respiratory and Critical Care Medicine, 170(5), 520–526. doi: 10.1164/rccm.200403-2810C.
  71. Kumar, P., Dushenkov, V., Motto, H., and Raskin, I. (1995). Phytoextraction—the use of plants to remove heavy-metals from soils. Environmental Science and Technology, 29(5), 1232–1238. doi: 10.1021/es00005a014.
  72. Lim, T. H., Jeong, S. M., Kim, S. D., & Gyenis, J. (2000). Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology a-Chemistry, 134(3), 209–217. doi: 10.1016/s1010-6030(00)00265-3.
  73. Murata, Y., Kamitani, K., & Takeuchi, K. (2000). Air purifying blocks based on photocatalysis. Paper presented at the Japan Interlocking BLock Pavement Engineering Association World Congress 2000, Tokyo, Japan.Google Scholar
  74. Murata, Y., Tawara, H., Obata, H., & Murata, K. (2003). European Patent No. 0,786,283.Google Scholar
  75. Murata, Y., & Tobinai, K. (2002). Influence of various factors on NOx removal performance of permeable interlocking block based on photocatalysis. Journal of Structural and Construction Engineering (Transactions of AIJ), (555), 9–15.Google Scholar
  76. Murruni, L., Conde, F., Leyva, G., & Litter, M. I. (2008). Photocatalytic reduction of Pb(II) over TiO(2): New insights on the effect of different electron donors. Applied Catalysis B-Environmental, 84(3–4), 563–569. doi: 10.1016/j.apcatb.2008.05.012
  77. Obee, T. N., and Brown, R. T. (1995). TIO2 Photocatalysis for indoor air applications—effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology, 29(5), 1223–1231. doi: 10.1021/es00005a013.
  78. Ohama, Y., & Van Gemert, D. (2011). Introduction. In Y. Ohama & D. Van Gemert (Eds.), Application of titanium dioxide photocatalysis to construction materials (1st ed.). Berlin: Springer.Google Scholar
  79. Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203(1), 82–86. doi: 10.1006/jcat.2001.3316.
  80. Osborn, D., Hassan, M. M., & Dylla, H. (2012). Quantification of NOX reduction via Nitrate accumulation on a TiO2 photocatalytic concrete pavement. Transportation Research Record 12-1832.Google Scholar
  81. Overman, H. T. J. (2009). Simulation model for NOX distributions in a street canyon with air purifying pavement. (Master: Civil Engineering and Management), University of Twente, Eschede, Netherlands.Google Scholar
  82. Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: Patents’ overview. Applied Catalysis B-Environmental, 99(3–4), 448–460. doi: 10.1016/j.apcatb.2010.05.011.
  83. Peral, J., & Ollis, D. F. (1992). Heterogeneous photocatalytic oxidation of gas-phase organics for air purification—acetone, 1-butanol, butyraldehyde, formaldehyde, and meta-xylene oxidation. Journal of Catalysis, 136(2), 554–565. doi: 10.1016/0021-9517(92)90085-v.
  84. PICADA. (2011). Guideline for end-users, GROWTH Project GRD1-2001-40449.Google Scholar
  85. Poon, C. S., & Cheung, E. (2007). No removal efficiency of photocatalytic paving blocks prepared with recycled materials. Construction and Building Materials, 21(8), 1746–1753. doi: 10.1016/j.conbuildmat.2006.05.018.
  86. Primary National Ambient Air Quality Standards for Nitrogen Dioxide: Final Rule, 75 Fed. Reg. 6474 (2010) (to be codified at 40 C.F.R. pts. 50 and 58).Google Scholar
  87. Rousseau, P., Drouadaine, I., & Mazé, M. (2009, May-June). Le procédé NOxer® : du développement aux mesures de dépollution sur site. Revue générale des routes et de l’aménagement.Google Scholar
  88. Sclafani, A., & Herrmann, J. M. (1996). Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry, 100(32), 13655–13661. doi: 10.1021/jp9533584.
  89. Sikkema, J. K. (2013). Photocatalytic degradation of NO X by concrete pavement containing titanium dioxide. (Unpublished doctoral dissertation). Iowa State University, Ames, IA.Google Scholar
  90. Sikkema, J. K., Alleman, J. E., Ong, S. K., Koziel, J. A., Taylor, P. C., & Bai, H. (2012, September 18–21). Photocatalytic concrete pavements: Decrease in NOX oxidation due to reaction product blinding. Paper presented at the International Conference on Long-Life Concrete Pavement-2012, Seattle, Washington.Google Scholar
  91. Strini, A., Cassese, S., & Schiavi, L. (2005). Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B-Environmental, 61(1–2), 90–97. doi: 10.1016/j.apcatb.2005.04.009.CrossRefGoogle Scholar
  92. The Cadmus Group, I. (2009). Nutrient Control Design Manual: State of Technology Review Report.Google Scholar
  93. Thoma, E. D., Shores, R. C., Isakov, V., & Baldauf, R. W. (2008). Characterization of near-road pollutant gradients using path-integrated optical remote sensing. Journal of the Air and Waste Management Association, 58(7), 879–890. doi: 10.3155/1047-3289.58.7.879.CrossRefGoogle Scholar
  94. Tompkins, D. T., Lawnicki, B. J., Zeltner, W. A., & Anderson, M. A. (2005). Evaluation of photocatalysis for gas-phase air cleaning—Part 1: Process, technical, and sizing considerations. Ashrae Transactions 2005, Vol 111, Pt 2, 111, 60–84.Google Scholar
  95. UNI. (2007). UNI 1247:2007. Italy: Milan.Google Scholar
  96. USEPA. (1999). Technical bulletin: Nitrogen oxides (NOx), why and how they are controlled. (EPA-456/F-99-006R). Research Triangle Park, NC.Google Scholar
  97. USEPA. (2001). National air quality and emissions trends report, 1999. (EPA 454/R-01-004). Washington, D.C.Google Scholar
  98. USEPA. (2007). Summary of current and historical light-duty vehicle emission standards. Washington, D.C. Retrieved from
  99. USEPA. (2008). Average annual emissions and fuel consumption for gasoline-fueled passenger cars and light trucks. (EPA420-F-08-024). Washington, D.C.: Retrieved from
  100. USEPA. (2009). National primary drinking water regulations. (EPA 816-F-09-004). Washington, D.C.Google Scholar
  101. USEPA. (2010a). Design values (Average 1-H 98th Percentiles over 3 Years) by county for nitrogen dioxide. Research Triangle Park, NC: Retrieved from
  102. USEPA. (2010b). Fact sheet: final revisions to the national ambient air quality standards for nitrogen dioxide. Research Triangle Park, NC: Retrieved from
  103. USEPA. (2010c). Final regulatory impact analysis (RIA) for the NO 2 national ambient Air quality standards (NAAQS). Research Triangle Park, NC: Retrieved from
  104. Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: a review. Atmospheric Environment, 37(2), 155–182. doi: 10.1016/s1352-2310(02)00857-9.CrossRefGoogle Scholar
  105. Wang, Y. J., DenBleyker, A., McDonald-Buller, E., Allen, D., & Zhang, K. M. (2011). Modeling the chemical evolution of nitrogen oxides near roadways. Atmospheric Environment, 45(1), 43–52. doi: 10.1016/j.atmosenv.2010.09.050.CrossRefGoogle Scholar
  106. Watts, M. J., & Cooper, A. T. (2008). Photocatalysis of 4-chlorophenol mediated by TiO(2) fixed to concrete surfaces. Solar Energy, 82(3), 206–211. doi: 10.1016/j.solener.2007.08.001.CrossRefGoogle Scholar
  107. Yu, J. C. (2002). Ambient Air Treatment by Titanium Dioxide (TiO2) Based Photocatalyst in Hong Kong.Google Scholar
  108. Yu, J. C. (2003). Deactivation and Regeneration of Environmentally Exposed Titanium Dioxide (TiO2) Based Products Hong Kong.Google Scholar
  109. Zhao, Y., Han, J., Shao, Y., & Feng, Y. (2009). Simultaneous SO(2) and NO removal from flue gas based on TiO(2) photocatalytic oxidation. Environmental Technology, 30(14), 1555–1563. doi: 10.1080/09593330903313786.CrossRefGoogle Scholar
  110. Zhao, J., & Yang, X. D. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 38(5), 645–654. doi: 10.1016/s0360-1323(02)00212-3.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joel K. Sikkema
    • 1
  • James E. Alleman
    • 2
  • Tom Cackler
    • 3
  • Peter C. Taylor
    • 3
  • Ben Bai
    • 2
  • Say-Kee Ong
    • 2
  • Kasthurirangan Gopalakrishnan
    • 2
  1. 1.Engineering DepartmentDordt CollegeAmesUSA
  2. 2.Department of Civil, Construction and Environmental EngineeringIowa State UniversityAmesUSA
  3. 3.National Concrete Pavement Technology CenterInstitute for Transportation, Iowa State UniversityAmesUSA

Personalised recommendations