Skip to main content

The 1980s and Early 1990s, Research on Foundations Takes Off

  • Chapter
  • First Online:
The Quantum Dissidents
  • 1529 Accesses

Abstract

The 1980s were transitional times for foundations, moving from an early fringe position to mainstream physics. In the 1990s it would undergo more profound change, becoming part of the blossoming and promising field of quantum information. Different from previous times, the 1980s had a more diversified research agenda. New foundation experiments enabled by new techniques flourished and Bell’s theorem experiments were resumed. New interpretations appeared and old ones were renewed. Theoretical breakthroughs were made in at least two different areas: the transition from the quantum description to the classical description through the idea of decoherence, and the early ideas related to the use of quantum physics to improve computers and computer science. Even without a thematic focus, however, the 1980s and the early 1990s were distinctive as being the years when technical advances made the implementation of different thought experiments possible. In the early 1990s, all the ingredients for the later emergence of quantum information were already present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A. Aspect, interviewed by the author and I. Silva, 16 Dec 2010 and 19 Jan 2011, American Institute of Physics, College Park, MD; AIP hereafter.

  2. 2.

    The 1985 Horne and Zeilinger paper was prepared for a conference in Finland dedicated to the 50th anniversary of the EPR paper. This was the first Zeilinger paper to deal with Bell’s theorem. Interview with Michael Horne, by Joan Bromberg, 12 Sep, 2002, AIP. Interview with Anton Zeilinger, by Olival Freire, 30 June 2014, AIP.

  3. 3.

    On Braginsky’s biography and his collaboration with American physicists on the issue of detecting gravitational waves, see Braginsky, Vladimir B. Interview by Shirley K. Cohen. Pasadena, California, January 15, 1997. Oral History Project, California Institute of Technology Archives. Retrieved on April 12, 2014 from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Braginsky_V.

  4. 4.

    Interview of Yanhua Shih and Morton Rubin by Joan Bromberg on 14 May 2001, AIP. Interview with Carroll Alley by Joan Bromberg on 16 May 2006, AIP.

  5. 5.

    Ibid. Yanhua Shih’s professional career was twice affected by the turmoil in his home country, China. Due to the Cultural Revolution he went to university late and eventually graduated in physics from the Northwestern University, in Xi’an, and went to the University of Maryland to do his PhD. On completion, while preparing to return to China, the Tiananmen Square protests of 1989 took place. He decided not to return as he was informed he was on a blacklist due to his activities at the Chinese graduate student organization and looked for a job in the U.S. Shih was hired by the University of Maryland, Baltimore County, to reinforce a fresh doctoral program in physics, and he settled there for the rest of his scientific career. Interview of Yanhua Shih by Olival Freire and Joan Bromberg on 28 May 2014, AIP.

  6. 6.

    On the history of GHZ theorem, see Greenberger (2002); interview with Michael Horne, by Joan Bromberg, 12 September 12, 2002, AIP; and interview with Anton Zeilinger, by Olival Freire, 30 June 2014, AIP.

  7. 7.

    The second paper contains a more detailed presentation of the GHZ theorem, its proof, and suggests possible experiments, including momentum and energy correlations among three and more photons produced through PDC.

  8. 8.

    Interview with Michael Horne, by Joan Bromberg, 12 Sep 2002, AIP. Interview with Anton Zeilinger, by Olival Freire, 30 June and 2 July 2014, AIP.

  9. 9.

    In fact, there already was some competition around the most general proof of the theorem between on the one hand, Greenberger, Horne, and Zeilinger and on the other hand, Clifton, Redhead, and Butterfield. This competition is recorded in the paper by Clifton et al. (1991), on a “note added in prof”, on p. 182.

  10. 10.

    Anton Zeilinger, interviewed by Olival Freire, ibid.

  11. 11.

    De Martini’s challenge and Zeilinger’s answer are in Physics World, “Teleportation: who was first?” 01 Mar 1998, pp. 23–24).

  12. 12.

    Gisin’s biographical information was drawn from Nicolas Gisin, interviewed by Olival Freire Jr, 2 Dec 2013, AIP. Bell’s quantum engineer episode is also reported in Gisin (2002).

  13. 13.

    http://www.wolffund.org.il/index.php?dir=site&page=winners&name=&prize=3016&year=2010&field=3008. Accessed on 18 Sep 2013.

  14. 14.

    Emphasis is in the original.

  15. 15.

    Fábio Freitas, “Tony Leggett – Challenging Quantum Mechanics with Quantum Mechanics,” unpublished paper, 2012.

  16. 16.

    1,353 citations on April 7, 2014. Source: Web of Science.

  17. 17.

    All data from Web of Science were accessed on April 7, 2014.

  18. 18.

    This paragraph is based on Freitas, 2012, op. cit. This paper draws Leggett’s biographical information from his Nobel Prize biography and interviews with Leggett by Babak Ashraf on 25 March 2005 and Fábio Freitas, on 3 Aug 2011.

  19. 19.

    1,400; 2,466; 1,526; and 381 citations, respectively, till April 7, 2014, according to Web of Science.

  20. 20.

    On the collaboration with Brazilian physicists, see Serge Haroche, interviewed by O. Freire, on 27 Feb 2004, AIP.

  21. 21.

    http://www.nobelprize.org/nobel_prizes/physics/laureates/, accessed on April 7, 2014.

  22. 22.

    The paragraphs on Zeh come from my paper “Quantum Dissidents …”, Studies in History and Philosophy of Modern Physics, 40, 280–289, 2009.

  23. 23.

    The original version, [“Probleme der Quantentheorie”, in German], may be found at http://www.rzuser.uni-heidelberg.de/~as3/. Franco Bassani to H. D. Zeh, 3 Oct 1968, with an appended referee’s report; Boschke to Zeh, 3 Oct 1968; I obtained copies of these letters due to the kindness of H. D. Zeh and F. Freitas.

  24. 24.

    H. D. Zeh, interviewed by Fabio Freitas, 2008.

  25. 25.

    “Ich mach es zu einer Lebensregel, so weit vermeidlich auf keinen Zeh zu treten, aber der Empfang eines von einem gewissen Dr. Zeh aus Ihrem Institut verfassten preprint veranlasst mich von dieser Regel abzuweichen. Ich habe allen Grund anzunehmen, dass ein solches Konzentrat wildesten Unsinnes nicht mit Ihrem Segen in die Welt verbreitet ist, und ich glaube Ihnen von Dienst zu sein, indem ich Ihre Aufmerksamkeit auf dieses Unglück richte.” L. Rosenfeld to J. H. D. Jensen, 14 Feb 1968. Next Jensen tried to attenuate Rosenfeld’s reaction, while fearing for its consequences: “I hope, that he does not quite have his reputation ruined,” Jensen to Rosenfeld, 1 March 1968. Rosenfeld then considered Zeh’s case in a “somewhat favorable light” though still considering Zeh’s paper “more like a possession claim of a monopoly of highest wisdom” than “as an invitation to a factual discussion,” Rosenfeld to Jensen, 6 March 1968. The affair occupied three more letters between Rosenfeld and Jensen: Jensen to Rosenfeld, 10 Apr 1968; 9 May 1968; Rosenfeld to Jensen, 25 Apr 1968. Rosenfeld Papers, Niels Bohr Archive, Copenhagen. I am indebted to Anja Jacobsen and Felicity Pors for recovering these letters and Christian Joas for the German translation.

  26. 26.

    H. D. Zeh, interviewed by Fabio Freitas, 2008, op. cit.

  27. 27.

    H. D. Zeh to J. A. Wheeler, 30 Oct 1980, Wheeler Papers, Series II, Box Wo-Ze, folder Zeh, WP.

  28. 28.

    Questionnaire sent to Zeh by David Edge, circa 1976. I am grateful to H. D. Zeh and F. Freitas for allowing me to consult this document.

  29. 29.

    H. D. Zeh, interviewed by Fabio Freitas, 2008, op. cit.

  30. 30.

    The text on Leggett is entirely based on Fabio Freitas, “Tony Leggett - Challenging Quantum Mechanics with Quantum Mechanics,” unpublished paper, 2012. This paper draws information on Leggett from his Nobel Prize biography (http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/leggett-bio.html), his Nobel lecture (http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/leggett-lecture.html), and interviews by Babak Ashraf on 25 March 2005 and Fábio Freitas, on 3 Aug 2011.

  31. 31.

    See Leggett’s Nobel lecture, on page 147, http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/leggett-lecture.html, accessed on April 10, 2014.

  32. 32.

    http://www.nobelprize.org/nobel_prizes/physics/laureates/2003/leggett-bio.html, accessed on April 10, 2014.

  33. 33.

    Ibid.

  34. 34.

    Freitas’ point is far more substantiated than the summary I have done. See Freitas, ibid.

  35. 35.

    Serge Haroche, interviewed by Olival Freire, 27 Feb 2004, AIP.

  36. 36.

    All Haroche’s quotations in this section come from the same paper (Haroche 2008).

  37. 37.

    Cohen-Tannoudji’s course is at http://www.phys.ens.fr/~Claude%20Cohen-Tannoudji/college-de-france/1979-80/cours1/cours1.pdf, accessed on 9 May 2014.

  38. 38.

    Alain Aspect, interview with O. Freire & I. Silva, 16 Dec 2010 and 19 Jan 2011, AIP.

  39. 39.

    The film is available at https://www.youtube.com/watch?v=oxknfn97vFE, accessed on 15 April 2014.

  40. 40.

    I am thankful to Aurino Ribeiro Filho for this remark.

  41. 41.

    In 1967, Wheeler wrote to Max Born: “You are one of the few persons who have contributed through your work and through your leadership to the elucidation of both general relativity and the quantum principles. […]. Which of these two principles do you rank as the ‘deepest’?” Born’s answer was disappointing, “… I am afraid I am too old (85) to understand it.” Wheeler to Born, 29 Sep 1967; Born to Wheeler, 17 Oct 1967. Wheeler Papers, Series I – Box Boh-Bu, Folder Born, M., American Philosophical Society, Philadelphia, PA.

  42. 42.

    Wheeler to A. O. Barut, 23 Oct 1973, Wheeler Papers, Series I – Box Ba-Bog, Folder Barut, A. Ibid.

  43. 43.

    Wheeler Papers, Series V, Notebook June 1973–April 1974. Ibid.

  44. 44.

    For some of these interpretations, larger introductions can be found at the Stanford Encyclopedia of Philosophy, at http://plato.stanford.edu/.

  45. 45.

    Historian and philosopher of science Yehuda Elkana (1984, p. 503) remarked, with irony: “An open-minded, fair-thinking, egalitarian, liberal philosopher will generally tend to designate himself a realist or a scientific realist. This is ‘a good thing’ to be. Idealist attitudes like positivism, operationalism, behaviorism are nowadays mostly rejected by philosophers of science and are contraposited to realism. Relativism, though not necessarily an idealist position, is also considered to be the opposite of realism, and is generally talked of as ‘the threat.’”

  46. 46.

    I draw from this paper to present the consistent history approach. It analyzes the extent to which this approach can be considered a new orthodoxy.

  47. 47.

    This issue is presented in Chap. 7.

  48. 48.

    For a detailed presentation of the GRW theory, see Ghirardi, GianCarlo, “Collapse Theories”, The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N. Zalta (ed.), URL: http://plato.stanford.edu/archives/win2011/entries/qm-collapse/, accessed on 16 April 2014.

  49. 49.

    Maximilian Schlosshauer (2011, pp. 63–64) does not cite the Duhem-Quine thesis, but his analysis suggests its very content: “Such an irreducible plurality of interpretations would tell us that we’re free to embellish—some may say encumber—the formalism with entities of our choice, if such a maneuver helps us visualize what’s going on, but that in doing so we’ll be crossing into strictly metaphysical terrain. And if we follow such a reading to its logical (if radical) conclusion, then quantum theory might even contain a lesson about the task of physics: that the search for ‘what the world is made of,’ for a unique, definitive, fundamental ontology at the heart of everything, may be ultimately misguided.”

  50. 50.

    These constraints are derived from the Clifton–Bub–Halvorson theorem, see Bub (2005).

  51. 51.

    Weisskopf’s statement is published in the proceedings of the International Colloquium on the History of Particle Physics, 21–23 July 1982, Paris, Journal de Physique, Colloque 8, Suppl. 12, 1982, on p. 422. I am thankful to Thiago Hartz for bringing this quotation to my attention.

  52. 52.

    Web of Science, consulted on 17 April 2014.

  53. 53.

    Source: Web of Science, accessed on 21 April 2014. This survey shows one of the caveats to take into account while taking data from this source. The 1984 paper by Bennett and Brassard, which opened the subject for research, is not listed in this survey probably because it was presented at a conference. Publishing original papers at conferences is usual in some fields, including computer science. The Web of Science is trying to fix the issue but its coverage still has shortcomings like this.

  54. 54.

    This presentation of the early works in quantum information is far from comprehensive. We have not presented, for instance, the contributions by Lov Grover, Benjamin Schumacher and Stephen Wiesner, all from the mid-1990s, the end of the period we are analyzing. We suggest the paper written by Chen-Pang Yeang (2011), which is the first historical account of the emergence of this field, meaningfully titled “Engineering Entanglement, Conceptualizing Quantum Information,” and the book by Nielsen and Chuang (2010), which is a conceptual introduction to the subject.

  55. 55.

    Ibid. Still, another caveat about the accuracy of scientometric data. The 1993 quantum teleportation paper, written by Bennett and colleagues, has collected till now more than 5,646 citations, but it did not appear in this survey, probably because it did not explicitly use the term “quantum information” in its abstract.

References

  • Aaserud, F.: Sputnik and the Princeton 3 – the National-Security Laboratory that was not to be. Hist. Stud. Phys. Biol. Sci. 25, 185–239 (1995)

    Google Scholar 

  • Arthur, R.T.W.: Quantum-mechanics, a half century later – Lopes, JL, Paty, M. Philos. Sci. 48(1), 156–161 (1981)

    MathSciNet  Google Scholar 

  • Aspect, A., et al.: Wave particle duality for a single photon. J Optic Nouvelle Revue D Optique 20(3), 119–129 (1989)

    Google Scholar 

  • Ballentine, L., et al.: Quantum-mechanics debate. Phys. Today 24(4), 36–44 (1971)

    Google Scholar 

  • Ballentine, L.E.: Resource letter IQM2: foundations of quantum mechanics since the Bell inequalities. Am. J. Phys. 55, 785–792 (1987)

    ADS  MathSciNet  Google Scholar 

  • Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, River Edge, NJ (1998)

    MATH  Google Scholar 

  • Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379(5–6), 257–426 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  • Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. With an Introduction by Alain Aspect. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Benioff, P.A.: Quantum-mechanical Hamiltonian models of discrete processes that erase their own histories – application to turing-machines. Int. J. Theor. Phys. 21(3–4), 177–201 (1982)

    MATH  MathSciNet  Google Scholar 

  • Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems & Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  • Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    ADS  MATH  MathSciNet  Google Scholar 

  • Bloch, I., et al.: Comment on – Alternative to orthodox interpretation of quantum theory. Am. J. Phys. 36(5), 462–463 (1968)

    ADS  Google Scholar 

  • Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1125 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  • Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    ADS  Google Scholar 

  • Bouwmeester, D., et al.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82(7), 1345–1349 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  • Brendel, J., et al.: Experimental test of Bell inequality for energy and time. Europhys. Lett. 20(7), 575–580 (1992)

    ADS  Google Scholar 

  • Bromberg, J.L.: Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics. Isis 97(2), 237–259 (2006)

    MathSciNet  Google Scholar 

  • Bromberg, J.L.: New instruments and the meaning of quantum mechanics. Hist. Stud. Nat. Sci. 38(3), 325–352 (2008)

    Google Scholar 

  • Brown, R.G.W., Pike, E.R.: A history of optical and optoelectronic physics in the twentieth century. In: Brown, L.M., Pais, A., Pippard, B. (eds.) Twentieth Century Physics, vol. III, pp. 1385–1504. IOP and AIP Press, New York (1995)

    Google Scholar 

  • Brune, M., et al.: Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77(24), 4887–4890 (1996)

    ADS  Google Scholar 

  • Brush, S.G.: The chimerical cat: philosophy of quantum mechanics in historical perspective. Soc. Stud. Sci. 10(4), 393–447 (1980)

    Google Scholar 

  • Bub, J.: Quantum mechanics is about quantum information. Found. Phys. 35(4), 541–560 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  • Burnham, D.C., Weinberg, D.L.: Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970)

    ADS  Google Scholar 

  • Caldeira, A.O.: Macroscopic Quantum Tunnelling and Related Topics, University of Sussex (1980)

    Google Scholar 

  • Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)

    ADS  Google Scholar 

  • Caldeira, A.O., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. 149(2), 374–456 (1983a)

    ADS  Google Scholar 

  • Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian-motion. Phys. A 121(3), 587–616 (1983b)

    MATH  MathSciNet  Google Scholar 

  • Caldeira, A.O., Leggett, A.J.: Influence of damping on quantum interference – an exactly soluble model. Phys. Rev. A 31(2), 1059–1066 (1985)

    ADS  Google Scholar 

  • Camilleri, K.: A history of entanglement: decoherence and the interpretation problem. Stud. Hist. Philos. Mod. Phys. 40, 290–302 (2009)

    MATH  MathSciNet  Google Scholar 

  • Castagnino, M., et al.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)

    MathSciNet  Google Scholar 

  • Clifton, R.K., et al.: Generalization of the Greenberger Horne Zeilinger algebraic proof of nonlocality. Found. Phys. 21(2), 149–184 (1991)

    ADS  MathSciNet  Google Scholar 

  • Cushing, J.: Quantum Mechanics – Historical Contingency and the Copenhagen Hegemony. The University of Chicago Press, Chicago, IL (1994)

    MATH  Google Scholar 

  • Cushing, J.T., McMullin, E.: Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem. University of Notre Dame Press, Notre Dame, IN (1989)

    Google Scholar 

  • Davidovich, L., et al.: Mesoscopic quantum coherences in cavity QED: preparation and decoherence monitoring schemes. Phys. Rev. A 53(3), 1295–1309 (1996)

    ADS  MathSciNet  Google Scholar 

  • Deligeorges, S.: Le Monde quantique. Éditions du Seuil, Paris (1985)

    Google Scholar 

  • Deutsch, D.: Quantum-theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985a)

    ADS  MATH  MathSciNet  Google Scholar 

  • Deutsch, D.: Quantum-theory as a universal physical theory. Int. J. Theor. Phys. 24(1), 1–41 (1985b)

    MathSciNet  Google Scholar 

  • Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)

    ADS  MATH  MathSciNet  Google Scholar 

  • Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

    ADS  Google Scholar 

  • Dieks, D.: Resolution of the measurement problem through decoherence of the quantum state. Phys. Lett. A 142(8–9), 439–446 (1989)

    ADS  MathSciNet  Google Scholar 

  • Dürr, D., et al.: Bohmian mechanics. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics – Concepts, Experiments, History and Philosophy, pp. 47–55. Springer, Berlin (2009)

    Google Scholar 

  • Dürr, D., et al.: Quantum chaos, classical randomness, and Bohmian mechanics. J. Stat. Phys. 68(1–2), 259–270 (1992)

    ADS  MATH  Google Scholar 

  • Easlea, B.: Fathering the Unthinkable: Masculinity, Scientists and the Nuclear Arms Race. Pluto, London (1983)

    Google Scholar 

  • Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

    ADS  Google Scholar 

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  • Elkana, Y.: Transformations in realist philosophy of science from Victorian Baconianism to the present day. In: Mendelsohn, E. (ed.) Transformation and Tradition in the Sciences: Essays in Honor of I. Bernard Cohen, pp. 487–511. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  • Enz, C.P.: No Time to Be Brief: A Scientific Biography of Wolfgang Pauli. Oxford University Press, Oxford (2002)

    Google Scholar 

  • Ferrero, M.: Special issue: International conference on quantum information. Conceptual foundations, developments and perspectives, 13–18 July 2002. J. Mod. Phys. 50, 6–7 (2003)

    Google Scholar 

  • Ferrero, M., Sánchez-Gómez, J.L.: Coming from material reality. Found. Sci. (2014) Online First, DOI 10.1007/s10699-014-9362-2.

  • Ferrero, M., Van der Merwe, A.: Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (1995)

    Google Scholar 

  • Ferrero, M., Van der Merwe, A.: New Developments on Fundamental Problems Quantum Physics. Kluwer, Dordrecht (1997)

    Google Scholar 

  • Ferrero, M., et al.: A further review of the incompatibility between classical principles and quantum postulates. Found. Sci. 18(1), 125–138 (2013)

    MathSciNet  Google Scholar 

  • Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    MathSciNet  Google Scholar 

  • Feynman, R.P., et al.: The Feynman Lectures on Physics. Addison-Wesley, Reading, MA (1963)

    Google Scholar 

  • Forman, P.: Production and curation: modernity entailed disciplinarity, postmodernity entails antidisciplinarity. Osiris 27(1), 56–97 (2012)

    Google Scholar 

  • Franson, J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62(19), 2205–2208 (1989)

    ADS  Google Scholar 

  • Freire Jr., O.: A story without an ending: the quantum physics controversy 1950-1970. Sci. Educ. 12(5–6), 573–586 (2003)

    MATH  Google Scholar 

  • Freire Jr., O.: Orthodoxies on the interpretation of quantum theory: the case of the consistent history approach. In: Katzir, S., Lehner, C., Renn, J. (eds.) Traditions and Transformations in the History of Quantum Physics, pp. 293–307. Edition Open Access, Berlin (2013)

    Google Scholar 

  • Friedman, J.R., et al.: Quantum superposition of distinct macroscopic states. Nature 406(6791), 43–46 (2000)

    ADS  Google Scholar 

  • Frigg, R.: GRW theory (Ghirardi, Rimini, Weber model of quantum mechanics). In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics Concepts, Experiments, History and Philosophy, pp. 266–270. Springer, Berlin (2009)

    Google Scholar 

  • Gallicchio, J., et al.: Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)

    ADS  Google Scholar 

  • Gell-Mann, M.: The Quark and the Jaguar: Adventures in the Simple and the Complex. W.H. Freeman, New York (1994)

    MATH  Google Scholar 

  • Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics, Tokyo, pp. 321–343 (1989)

    Google Scholar 

  • Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information, pp. 425–458. Addison-Wesley, Redwood City, CA (1990)

    Google Scholar 

  • Gell-Mann, M., Hartle, J.B.: Classical equations for quantum-systems. Phys. Rev. D 47(8), 3345–3382 (1993)

    ADS  MathSciNet  Google Scholar 

  • Gerry, C.C., Bruno, K.M.: The Quantum Divide: Why Schrödinger’s Cat Is Either Dead or Alive. Oxford University Press, Oxford (2013)

    Google Scholar 

  • Ghirardi, G.C.: John Stewart Bell and the dynamical reduction program. In: Bertlmann, R.A., Zeilinger, A. (eds.) Quantum [Un]speakables – From Bell to Quantum Information, pp. 287–305. Springer, Berlin (2002)

    Google Scholar 

  • Ghirardi, G.C.: Some reflections inspired by my research activity in quantum mechanics. J. Phys. A Math. Theor. 40, 2891–2917 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  • Ghirardi, G.C., Weber, T.: Quantum-mechanics and faster-than-light communication – methodological considerations. Nuovo Cimento Della Societa Italiana Di Fisica B Gen Phys Relat. Astron. Math. Phys. Methods 78(1), 9–20 (1983)

    ADS  Google Scholar 

  • Ghirardi, G.C., et al.: A general argument against superluminal transmission through quantum mechanical measurement process. Lettere al Nuovo Cimento 27(10), 293–298 (1980)

    MathSciNet  Google Scholar 

  • Ghirardi, G.C., et al.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Ghirardi, G.C., et al.: Markov-processes in Hilbert-space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42(1), 78–89 (1990)

    ADS  MathSciNet  Google Scholar 

  • Ghosh, R., et al.: Interference of 2 photons in parametric down conversion. Phys. Rev. A 34(5), 3962–3968 (1986)

    ADS  Google Scholar 

  • Gisin, N.: Quantum measurements and stochastic-processes. Phys. Rev. Lett. 52(19), 1657–1660 (1984)

    ADS  MathSciNet  Google Scholar 

  • Gisin, N.: Sundays in a quantum engineer’s life. In: Bertlmann, R.A., Zeilinger, A. (eds.) Quantum [Un]speakable – From Bell to Quantum Information, pp. 199–207. Springer, Berlin (2002)

    Google Scholar 

  • Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    ADS  Google Scholar 

  • Grangier, P.: Experiments with single photons. Séminaire Poincaré http://www.bourbaphy.fr/grangier.pdf%5D (2005)

  • Grangier, P., et al.: Experimental-evidence for a photon anticorrelation effect on a beam splitter – a new light on single-photon interferences. Europhys. Lett. 1(4), 173–179 (1986)

    ADS  Google Scholar 

  • Greenberger, D.: The history of the GHZ paper. In: Bertlmann, R.A., Zeilinger, A. (eds.) Quantum [Un]speakable – From Bell to Quantum Information, pp. 281–286. Springer, Berlin (2002)

    Google Scholar 

  • Greenberger, D.M., Zeilinger, A.: Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler. New York Academy of Sciences, New York (1995)

    Google Scholar 

  • Greenberger, D., et al.: Going beyond Bell’s theorem. In: Kafatos, M.C. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)

    Google Scholar 

  • Greenberger, D.M., et al.: Bell theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    ADS  MATH  MathSciNet  Google Scholar 

  • Greenberger, D.M., et al.: Multiparticle interferometry and the superposition principle. Phys. Today 46(8), 22–29 (1993)

    Google Scholar 

  • Greenberger, D.M., et al.: Compendium of Quantum Physics Concepts, Experiments, History and Philosophy. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Griffiths, R.B.: Consistent histories and the interpretation of quantum-mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)

    ADS  MATH  Google Scholar 

  • Groblacher, S., et al.: An experimental test of non-local realism. Nature 446(7138), 871–875 (2007)

    ADS  Google Scholar 

  • Grynberg, G., et al.: Introduction to Quantum Optics – From the Semi-classical Approach to Quantized Light. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  • Halliwell, J.J.: Decoherence in quantum cosmology. Phys. Rev. D 39(10), 2912–2923 (1989)

    ADS  MathSciNet  Google Scholar 

  • Harding, S.G. (ed.): Can Theories Be Refuted? Essays on the Duhem-Quine Thesis. Synthese Library, vol. 81. D. Reidel, Dordrecht (1976)

    Google Scholar 

  • Haroche, S.: Entanglement, decoherence and the quantum/classical boundary. Phys. Today 51(7), 36–42 (1998)

    Google Scholar 

  • Haroche, S.: Essay: fifty years of atomic, molecular and optical physics in physical review letters. Phys. Rev. Lett. 101, 160001 (2008)

    ADS  Google Scholar 

  • Herbert, N.: Flash – a superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 12(12), 1171–1179 (1982)

    ADS  Google Scholar 

  • Home, D., Whitaker, M.A.B.: Ensemble interpretations of quantum-mechanics – a modern perspective. Phys. Rep. 210(4), 223–317 (1992)

    ADS  MathSciNet  Google Scholar 

  • Hong, C.K., Mandel, L.: Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56(1), 58–60 (1986)

    ADS  Google Scholar 

  • Hong, C.K., et al.: Measurement of subpicosecond time intervals between 2 photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    ADS  Google Scholar 

  • Horne, M.A., Zeilinger, A.: A Bell-type EPR experiment using linear momenta. In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics – 50 Years of the Einstein-Podolsky-Rosen Gedanken Experiment, pp. 435–439. World Scientific, Singapore (1985)

    Google Scholar 

  • Horne, M.A., et al.: Two-particle interferometry. Phys. Rev. Lett. 62(19), 2209–2212 (1989)

    ADS  MathSciNet  Google Scholar 

  • Horne, M., et al.: Down-conversion photon pairs: a new chapter in the history of quantum-mechanical entanglement. In: Anandan, J.S. (ed.) Quantum Coherence, pp. 356–372. World Scientific, Singapore (1990)

    Google Scholar 

  • Howie, A.: Akira Tonomura (1942–2012). Nature 486, 324 (2012)

    ADS  Google Scholar 

  • Jacques, V., et al.: Single-photon wavefront-splitting interference – an illustration of the light quantum in action. Eur. Phys. J. D 35(3), 561–565 (2005)

    ADS  Google Scholar 

  • Jammer, M.: The Philosophy of Quantum Mechanics – The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)

    Google Scholar 

  • Kaiser, D.: How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival. W. W. Norton, New York (2012)

    Google Scholar 

  • Kent, A.: Our quantum problem – When the deepest theory we have seems to undermine science itself, some kind of collapse looks inevitable. Aeon. London, Aeon Magazine. http://aeon.co/magazine/nature-and-cosmos/our-quantum-reality-problem/ (2014). Accessed 7 May 2014

  • Kiess, T.E., et al.: Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett. 71(24), 3893–3897 (1993)

    ADS  Google Scholar 

  • Kwiat, P.G., et al.: High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A 47(4), R2472–R2475 (1993)

    ADS  MathSciNet  Google Scholar 

  • Kwiat, P.G., et al.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337–4341 (1995)

    ADS  Google Scholar 

  • Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69(6), 655–701 (2001)

    ADS  Google Scholar 

  • Laloë, F.: Do We Really Understand Quantum Mechanics? Cambridge University Press, New York (2012)

    Google Scholar 

  • Leggett, A.J.: Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33(10), 1469–1493 (2003)

    MathSciNet  Google Scholar 

  • Lopes, J.L., Paty, M.: Quantum Mechanics: A Half Century Later. Holland/D. Reidel, Dordrecht/Boston, MA (1977)

    MATH  Google Scholar 

  • Mair, A., et al.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313–316 (2001)

    ADS  Google Scholar 

  • Mermin, N.D.: What’s wrong with these elements of reality? Phys. Today 43(6), 9–11 (1990)

    Google Scholar 

  • Misner, C.W., et al.: John Wheeler, relativity, and quantum information. Phys. Today 62(4), 40–46 (2009)

    MathSciNet  Google Scholar 

  • Monroe, C., et al.: A “Schrodinger cat” superposition state of an atom. Science 272(5265), 1131–1136 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  • Nakajima, S., et al. (eds.): Foundations of Quantum Mechanics in the Light of New Technologies [Selected Papers from the Proceedings of the First Through Fourth International Symposia]. World Scientific, Singapore (1996)

    Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Omnès, R.: Interpretation of quantum-mechanics. Phys. Lett. A 125(4), 169–172 (1987)

    ADS  MathSciNet  Google Scholar 

  • Omnès, R.: Logical reformulation of quantum-mechanics. 1. Foundations. J. Stat. Phys. 53(3–4), 893–932 (1988a)

    ADS  MATH  Google Scholar 

  • Omnès, R.: Logical reformulation of quantum-mechanics. 2. Interferences and the Einstein-Podolsky-Rosen experiment. J. Stat. Phys. 53(3–4), 933–955 (1988b)

    ADS  Google Scholar 

  • Omnès, R.: Logical reformulation of quantum-mechanics. 3. Classical limit and irreversibility. J. Stat. Phys. 53(3–4), 957–975 (1988c)

    ADS  Google Scholar 

  • Ou, Z.-Y.J.: Multi-Photon Quantum Interference. Springer, New York (2007)

    Google Scholar 

  • Ou, Z.Y., Mandel, L.: Violation of Bells-inequality and classical probability in a 2-photon correlation experiment. Phys. Rev. Lett. 61(1), 50–53 (1988)

    ADS  MathSciNet  Google Scholar 

  • Pan, J.W., et al.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891–3894 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  • Pearle, P.: Reduction of state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13(4), 857–868 (1976)

    ADS  MathSciNet  Google Scholar 

  • Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Google Scholar 

  • Peña, L., Cetto, A.M., Valdes-Hernandez, A.: The Emerging Quantum—The Physics Behind Quantum Mechanics. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  • Philippidis, C., et al.: Quantum interference and the quantum potential. Nuovo Cimento Della Societa Italiana Di Fisica B Gen. Phys. Relat. Astron. Math. Phys. Methods 52(1), 15–28 (1979)

    ADS  MathSciNet  Google Scholar 

  • Pusey, M.F., et al.: On the reality of the quantum state. Nat. Phys. 8(6), 475–478 (2012)

    Google Scholar 

  • Rhodes, R.: The Making of the Atomic Bomb. Simon & Schuster, New York (1986)

    Google Scholar 

  • Rosa, R.: The Merli–Missiroli–Pozzi two-slit electron-interference experiment. Phys. Perspect. 14, 178–195 (2012)

    ADS  Google Scholar 

  • Rowe, M.A., et al.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409(6822), 791–794 (2001)

    Google Scholar 

  • Scheidl, T., et al.: Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. U. S. A. 107(46), 19708–19713 (2010)

    ADS  Google Scholar 

  • Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2004)

    ADS  Google Scholar 

  • Schlosshauer, M. (ed.): Elegance and Enigma – The Quantum Interviews. Springer, Heidelberg (2011)

    Google Scholar 

  • Schlosshauer, M., et al.: The interpretation of quantum mechanics: from disagreement to consensus? Annalen Der Physik 525(4), A51–A54 (2013)

    ADS  MATH  Google Scholar 

  • Schweber, S.S.: Writing the biography of Hans Bethe: contextual history and Paul Forman. Phys. Perspect. 6, 179–217 (2014)

    Google Scholar 

  • Shih, Y.H., Alley, C.O.: New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61(26), 2921–2924 (1988)

    ADS  Google Scholar 

  • Shor, P.W.: Algorithms for quantum computation – discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  • Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    ADS  Google Scholar 

  • Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp 56–65 (1996)

    Google Scholar 

  • Silva, I.: Uma história do conceito de fóton na segunda metade do século XX: para além de histórias do modelo bola de bilhar. Salvador, Universidade Federal da Bahia and Universidade Estadual de Feira de Santana. PhD dissertation (2013)

    Google Scholar 

  • Silva Neto, C.P., Freire Jr., O.: Herch Moysés Nussenzveig e a Ótica Quântica: consolidando disciplinas através de escolas de verão e livros-texto. Revista Brasileira De Ensino De Fisica 35(2), 2601–2611 (2013)

    Google Scholar 

  • Smart, A.G.: Physics Nobel honors pioneers in quantum optics. Phys. Today 65(12), 16–18 (2012)

    ADS  Google Scholar 

  • Tittel, W., et al.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81(17), 3563–3566 (1998)

    ADS  Google Scholar 

  • Tonomura, A.: Applications of electron holography. Rev. Mod. Phys. 59(3), 639–669 (1987)

    ADS  Google Scholar 

  • Tonomura, A., et al.: Evidence for Aharonov-Bohm effect with magnetic-field completely shielded from electron wave. Phys. Rev. Lett. 56(8), 792–795 (1986)

    ADS  Google Scholar 

  • Tonomura, A., et al.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57(2), 117–120 (1989)

    ADS  Google Scholar 

  • Unruh, W.G., Zurek, W.H.: Reduction of a wave packet in quantum Brownian-motion. Phys. Rev. D 40(4), 1071–1094 (1989)

    ADS  MathSciNet  Google Scholar 

  • Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A Math. Theor. 40(12), 3285–3303 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  • Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010)

    ADS  Google Scholar 

  • van der Wal, C.H., et al.: Quantum superposition of macroscopic persistent-current states. Science 290(5492), 773–777 (2000)

    ADS  Google Scholar 

  • Weber, R.L., Lenihan, J.M.A.: Pioneers of Science: Nobel Prize Winners in Physics. Institute of Physics, Bristol (1980)

    Google Scholar 

  • Weihs, G., et al.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81(23), 5039–5043 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  • Wheeler, J.A.: Include the observer in the wave function? In: Lopes, J.L., Paty, M. (eds.) Quantum Mechanics: A Half Century Later, pp. 1–18. D. Reidel, Dordrecht (1977)

    Google Scholar 

  • Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic, New York (1978)

    Google Scholar 

  • Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  • Whitaker, M.A.B.: Theory and experiment in the foundations of quantum theory. Prog. Quant. Electron. 24, 1–106 (2000)

    ADS  Google Scholar 

  • Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    ADS  Google Scholar 

  • Yeang, C.-P.: Engineering entanglement, conceptualizing quantum information. Ann. Sci. 68(3), 325–350 (2011)

    Google Scholar 

  • Zeh, H.D.: On the interpretations of measurement in quantum theory. Found. Phys. 1, 69–76 (1970) [Reprinted in Wheeler and Zurek, Quantum Theory and Measurement, pp. 342–349]

    ADS  Google Scholar 

  • Zeh, H.D.: Roots and fruits of decoherence. Quant. Decoherence Poincare Semin. 2005(48), 151–175 (2007)

    MathSciNet  Google Scholar 

  • Zukowski, M., et al.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    ADS  Google Scholar 

  • Zurek, W.H.: Pointer basis of quantum apparatus – into what mixture does the wave packet collapse. Phys. Rev. D 24(6), 1516–1525 (1981)

    ADS  MathSciNet  Google Scholar 

  • Zurek, W.H.: Environment-induced super-selection rules. Phys. Rev. D 26(8), 1862–1880 (1982)

    ADS  MathSciNet  Google Scholar 

  • Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36–44 (1991)

    Google Scholar 

  • Zurek, W.H.: Decoherence, einselection and the existential interpretation (the rough guide). Philos. Trans. Roy. Soc. a Math. Phys. Eng. Sci. 356(1743), 1793–1821 (1998)

    ADS  MathSciNet  Google Scholar 

  • Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  • Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181–188 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freire Junior, O. (2015). The 1980s and Early 1990s, Research on Foundations Takes Off. In: The Quantum Dissidents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44662-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44662-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44661-4

  • Online ISBN: 978-3-662-44662-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics