Feinberg, E., Genethliou, D.: Load forecasting. In: Chow, J., Wu, F., Momoh, J. (eds.) Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems, pp. 269–285. Springer US (2005)
Google Scholar
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)
CrossRef
MATH
Google Scholar
Campbell, P.R., Adamson, K.: Methodologies for load forecasting. In: 2006 3rd International IEEE Conference on Intelligent Systems, pp. 800–806. IEEE (2006)
Google Scholar
Weron, R.: Modeling and forecasting electricity loads and prices: A statistical approach, vol. 403. Wiley. com (2007)
Google Scholar
Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid 1(2), 120–133 (2010)
CrossRef
Google Scholar
Goia, A., May, C., Fusai, G.: Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting 26(4), 700–711 (2010)
CrossRef
Google Scholar
Pardo, A., Meneu, V., Valor, E.: Temperature and seasonality influences on spanish electricity load. Energy Economics 24(1), 55–70 (2002)
CrossRef
Google Scholar
Wang, J., Li, L., Niu, D., Tan, Z.: An annual load forecasting model based on support vector regression with differential evolution algorithm. Applied Energy 94, 65–70 (2012)
CrossRef
Google Scholar
Ilić, S.A., Vukmirović, S.M., Erdeljan, A.M., Kulić, F.J.: Hybrid artificial neural network system for short-term load forecasting. Thermal Science 16(suppl. 1), 215–224 (2012)
CrossRef
Google Scholar
Yang, H.T., Huang, C.M.: A new short-term load forecasting approach using self-organizing fuzzy armax models. IEEE Transactions on Power Systems 13(1), 217–225 (1998)
CrossRef
Google Scholar
Annamareddi, S., Gopinathan, S., Dora, B.: A simple hybrid model for short-term load forecasting. Journal of Engineering 2013 (2013)
Google Scholar
Taylor, J.W.: An evaluation of methods for very short-term load forecasting using minute-by-minute british data. International Journal of Forecasting 24(4), 645–658 (2008)
CrossRef
Google Scholar
Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1), 35–62 (1998)
CrossRef
Google Scholar
Suganthi, L., Samuel, A.A.: Energy models for demand forecasting–a review. Renewable and Sustainable Energy Reviews 16(2), 1223–1240 (2012)
CrossRef
Google Scholar
Mohandes, M.: Support vector machines for short-term electrical load forecasting. International Journal of Energy Research 26(4), 335–345 (2002)
CrossRef
Google Scholar
Li, Y.C., Fang, T.J., Yu, E.K.: Study of support vector machines for short-term load forecasting. Proceedings of the Csee 6, 10 (2003)
Google Scholar
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering 30(1), 25–36 (2006)
Google Scholar
Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)
MathSciNet
CrossRef
MATH
Google Scholar
Xiao, Z., Dellandrea, E., Dou, W., Chen, L.: Hierarchical classification of emotional speech. IEEE Transactions on Multimedia (2007)
Google Scholar
Sand, K., Foosnas, J., Nordgard, D.E., Kristoffersen, V., Solvang, T.B., Wage, D.: Experiences from norwegian smart grid pilot projects. iN: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4. IET (2013)
Google Scholar
Chen, B.J., Chang, M.W., et al.: Load forecasting using support vector machines: A study on eunite competition 2001. IEEE Transactions on Power Systems 19(4), 1821–1830 (2004)
CrossRef
Google Scholar
Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)
CrossRef
Google Scholar
Uguroglu, S.: Robust Learning with Highly Skewed Category Distributions. PhD thesis, Carnegie Mellon University (2013)
Google Scholar
Huang, H., He, Q., Chiew, K., Qian, F., Ma, L.: Clover: a faster prior-free approach to rare-category detection. Knowledge and Information Systems 35(3), 713–736 (2013)
CrossRef
Google Scholar