Skip to main content

A Pattern Recognition Approach for Peak Prediction of Electrical Consumption

  • Conference paper

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 436)

Abstract

Predicting and mitigating demand peaks in electrical networks has become a prevalent research topic. Demand peaks pose a particular challenge to energy companies because these are difficult to foresee and require the net to support abnormally high consumption levels. In smart energy grids, time-differentiated pricing policies that increase the energy cost for the consumers during peak periods, and load balancing are examples of simple techniques for peak regulation. In this paper, we tackle the task of predicting power peaks prior to their actual occurrence in the context of a pilot Norwegian smart grid network.

While most legacy studies formulate the problem as time-series-based estimation problem, we take a radically different approach and map it to a classical pattern recognition problem using a simple but subtle formulations. Among the key findings of this study is the ability of the algorithms to accurately detect 80% of energy consumption peaks up to one week ahead of time. Further, different classification methods have been rigorously tested and applied on real-life data from a Norwegian smart grid pilot project.

Keywords

  • Peak Prediction
  • Energy Consumption
  • Classification

References

  1. Feinberg, E., Genethliou, D.: Load forecasting. In: Chow, J., Wu, F., Momoh, J. (eds.) Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems, pp. 269–285. Springer US (2005)

    Google Scholar 

  2. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)

    CrossRef  MATH  Google Scholar 

  3. Campbell, P.R., Adamson, K.: Methodologies for load forecasting. In: 2006 3rd International IEEE Conference on Intelligent Systems, pp. 800–806. IEEE (2006)

    Google Scholar 

  4. Weron, R.: Modeling and forecasting electricity loads and prices: A statistical approach, vol. 403. Wiley. com (2007)

    Google Scholar 

  5. Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid 1(2), 120–133 (2010)

    CrossRef  Google Scholar 

  6. Goia, A., May, C., Fusai, G.: Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting 26(4), 700–711 (2010)

    CrossRef  Google Scholar 

  7. Pardo, A., Meneu, V., Valor, E.: Temperature and seasonality influences on spanish electricity load. Energy Economics 24(1), 55–70 (2002)

    CrossRef  Google Scholar 

  8. Wang, J., Li, L., Niu, D., Tan, Z.: An annual load forecasting model based on support vector regression with differential evolution algorithm. Applied Energy 94, 65–70 (2012)

    CrossRef  Google Scholar 

  9. Ilić, S.A., Vukmirović, S.M., Erdeljan, A.M., Kulić, F.J.: Hybrid artificial neural network system for short-term load forecasting. Thermal Science 16(suppl. 1), 215–224 (2012)

    CrossRef  Google Scholar 

  10. Yang, H.T., Huang, C.M.: A new short-term load forecasting approach using self-organizing fuzzy armax models. IEEE Transactions on Power Systems 13(1), 217–225 (1998)

    CrossRef  Google Scholar 

  11. Annamareddi, S., Gopinathan, S., Dora, B.: A simple hybrid model for short-term load forecasting. Journal of Engineering 2013 (2013)

    Google Scholar 

  12. Taylor, J.W.: An evaluation of methods for very short-term load forecasting using minute-by-minute british data. International Journal of Forecasting 24(4), 645–658 (2008)

    CrossRef  Google Scholar 

  13. Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1), 35–62 (1998)

    CrossRef  Google Scholar 

  14. Suganthi, L., Samuel, A.A.: Energy models for demand forecasting–a review. Renewable and Sustainable Energy Reviews 16(2), 1223–1240 (2012)

    CrossRef  Google Scholar 

  15. Mohandes, M.: Support vector machines for short-term electrical load forecasting. International Journal of Energy Research 26(4), 335–345 (2002)

    CrossRef  Google Scholar 

  16. Li, Y.C., Fang, T.J., Yu, E.K.: Study of support vector machines for short-term load forecasting. Proceedings of the Csee 6, 10 (2003)

    Google Scholar 

  17. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering 30(1), 25–36 (2006)

    Google Scholar 

  18. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Xiao, Z., Dellandrea, E., Dou, W., Chen, L.: Hierarchical classification of emotional speech. IEEE Transactions on Multimedia (2007)

    Google Scholar 

  20. Sand, K., Foosnas, J., Nordgard, D.E., Kristoffersen, V., Solvang, T.B., Wage, D.: Experiences from norwegian smart grid pilot projects. iN: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4. IET (2013)

    Google Scholar 

  21. Chen, B.J., Chang, M.W., et al.: Load forecasting using support vector machines: A study on eunite competition 2001. IEEE Transactions on Power Systems 19(4), 1821–1830 (2004)

    CrossRef  Google Scholar 

  22. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    CrossRef  Google Scholar 

  23. Uguroglu, S.: Robust Learning with Highly Skewed Category Distributions. PhD thesis, Carnegie Mellon University (2013)

    Google Scholar 

  24. Huang, H., He, Q., Chiew, K., Qian, F., Ma, L.: Clover: a faster prior-free approach to rare-category detection. Knowledge and Information Systems 35(3), 713–736 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 IFIP International Federation for Information Processing

About this paper

Cite this paper

Goodwin, M., Yazidi, A. (2014). A Pattern Recognition Approach for Peak Prediction of Electrical Consumption. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds) Artificial Intelligence Applications and Innovations. AIAI 2014. IFIP Advances in Information and Communication Technology, vol 436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44654-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44654-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44653-9

  • Online ISBN: 978-3-662-44654-6

  • eBook Packages: Computer ScienceComputer Science (R0)