Skip to main content

Coherent Spectroscopy

  • Chapter
  • 4966 Accesses

Abstract

This chapter provides an introduction to different spectroscopic techniques that are based either on the coherent excitation of atoms and molecules or on the coherent superposition of light scattered by molecules and small particles. The coherent excitation establishes definite phase relations between the amplitudes of the atomic or molecular wave functions; this, in turn, determines the total amplitudes of the emitted, scattered, or absorbed radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Chapter 6

  1. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1989)

    MATH  Google Scholar 

  2. T. Baumert, B. Bühler, M. Grosser, R. Thalweiser, V. Weiss, E. Wiedemann, R. Gerber, Femtosecond time-resolved wave packet motion in molecular multiphoton ionization and fragmentation. J. Phys. Chem. 95, 8103 (1991)

    Article  Google Scholar 

Chapter 7

  1. W. Hanle, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93 (1924)

    Article  ADS  Google Scholar 

  2. M. Norton, A. Gallagher, Measurements of lowest-S-state lifetimes of gallium, indium and thallium. Phys. Rev. A 3, 915 (1971)

    Article  ADS  Google Scholar 

  3. F. Bylicki, H.G. Weber, H. Zscheeg, M. Arnold, On \(\mathrm{NO_{2}}\) excited state lifetime and g-factors in the 593 nm band. J. Chem. Phys. 80, 1791 (1984)

    Article  ADS  Google Scholar 

  4. H.H. Stroke, G. Fulop, S. Klepner, Level crossing signal line shapes and ordering of energy levels. Phys. Rev. Lett. 21, 61 (1968)

    Article  ADS  Google Scholar 

  5. M. McClintock, W. Demtröder, R.N. Zare, Level crossing studies of \(\mathrm{Na_{2}}\), using laser-induced fluorescence. J. Chem. Phys. 51, 5509 (1969)

    Article  ADS  Google Scholar 

  6. R.N. Zare, Molecular level crossing spectroscopy. J. Chem. Phys. 45, 4510 (1966)

    Article  ADS  Google Scholar 

  7. P. Franken, Interference effects in the resonance fluorescence of “crossed” excited states. Phys. Rev. 121, 508 (1961)

    Article  ADS  Google Scholar 

  8. G. Breit, Quantum theory of dispersion. Rev. Mod. Phys. 5, 91 (1933)

    Article  ADS  MATH  Google Scholar 

  9. R.N. Zare, Interference effects in molecular fluorescence. Acc. Chem. Res. 4, 361 (1971)

    Article  Google Scholar 

  10. J. Alnis et al., The Hanle effect and level crossing spectroscopy in Rb-vapour under strong laser excitation. J. Phys. B, At. Mol. Opt. Phys. 36, 1161 (2003)

    Article  ADS  Google Scholar 

  11. B. Cahn et al., Zeeman-tuned rotational level crossing spectroscopy in a diatomic free radical. arXiv:1310.6450 [physics]

  12. G.W. Series, Coherence effects in the interaction of radiation with atoms, in Physics of the One- and Two-Electron Atoms, ed. by F. Bopp, H. Kleinpoppen (North-Holland, Amsterdam, 1969), p. 268

    Google Scholar 

  13. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 168 (1972)

    Article  ADS  Google Scholar 

  14. J.N. Dodd, R.D. Kaul, D.M. Warrington, The modulation of resonance fluorescence excited by pulsed light. Proc. Phys. Soc. 84, 176 (1964)

    Article  ADS  Google Scholar 

  15. M.S. Feld, A. Sanchez, A. Javan, Theory of stimulated level crossing, in Int’l Colloq. on Doppler-Free Spectroscopic Methods for Single Molecular Systems, ed. by J.C. Lehmann, J.C. Pebay-Peyroula. (Ed. du Centre National Res. Scient., Paris, 1974), p. 87

    Google Scholar 

  16. H. Walther (ed.), Laser Spectroscopy of Atoms and Molecules. Topics Appl. Phys., vol. 2 (Springer, Berlin, 1976)

    Google Scholar 

  17. G. Moruzzi, F. Strumia (eds.), The Hanle Effect and Level Crossing Spectroscopy (Plenum, New York, 1992); M. Auzinsky et al., Level-Crossing Spectroscopy of the 7, 9 and 10D 5/2 states of \(\mathrm{{}^{133}Cs}\). Phys. Rev. A 75, 022502 (2007)

    Google Scholar 

  18. P. Hannaford, Oriented atoms in weak magnetic fields. Phys. Scr. T 70, 117 (1997)

    Article  ADS  Google Scholar 

  19. J.C. Lehmann, Probing small molecules with lasers, in Frontiers of Laser Spectroscopy, vol. 1, ed. by R. Balian, S. Haroche, S. Liberman (North-Holland, Amsterdam, 1977)

    Google Scholar 

  20. M. Broyer, J.C. Lehmann, J. Vigue, G-factors and lifetimes in the B-state of molecular iodine. J. Phys. 36, 235 (1975)

    Article  Google Scholar 

  21. H. Figger, D.L. Monts, R.N. Zare, Anomalous magnetic depolarization of fluorescence from the \(\mathrm{NO_{2}}\) \({}^{2}_{}\mathrm{B}_{2}\)-state. J. Mol. Spectrosc. 68, 388 (1977)

    Article  ADS  Google Scholar 

  22. J.R. Bonilla, W. Demtröder, Level crossing spectroscopy of \(\mathrm{NO_{2}}\) using Doppler-reduced laser excitation in molecular beams. Chem. Phys. Lett. 53, 223 (1978)

    Article  ADS  Google Scholar 

  23. H.G. Weber, F. Bylicki, \(\mathrm{NO_{2}}\) lifetimes by Hanle effect measurements. Chem. Phys. 116, 133 (1987)

    Article  ADS  Google Scholar 

  24. F. Bylicki, H.G. Weber, G. Persch, W. Demtröder, On g factors and hyperfine structure in electronically excited states of \(\mathrm{NO_{2}}\). J. Chem. Phys. 88, 3532 (1988)

    Article  ADS  Google Scholar 

  25. H.J. Beyer, H. Kleinpoppen, Anticrossing spectroscopy, in Progr. Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York, 1978), p. 607

    Chapter  Google Scholar 

  26. P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas, Anticrossing effects in Rydberg states of lithium in the presence of parallel magnetic and electric fields. Phys. Rev. A 40, 3026 (1989)

    Article  ADS  Google Scholar 

  27. G. Raithel, M. Fauth, H. Walther, Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields. Phys. Rev. A 44, 1898 (1991)

    Article  ADS  Google Scholar 

  28. J. Bengtsson, J. Larsson, S. Svanberg, C.G. Wahlström, Hyperfine-structure study of the 3d 10 p 2 P 3/2 level of neutral copper using pulsed level crossing spectroscopy at short laser wavelengths. Phys. Rev. A 41, 233 (1990)

    Article  ADS  Google Scholar 

  29. G. Hermann, G. Lasnitschka, J. Richter, A. Scharmann, Determination of lifetimes and hyperfine splittings of Tl states nP 3/2 by level crossing spectroscopy with two-photon excitation. Z. Phys. D 10, 27 (1988)

    Article  ADS  Google Scholar 

  30. G. von Oppen, measurements of state multipoles using level crossing techniques. Comments At. Mol. Phys. 15, 87 (1984)

    Google Scholar 

  31. A.C. Luntz, R.G. Brewer, Zeeman-tuned level crossing in \({}^{1}_{}\mathrm {\varSigma}_{}\) \(\mathrm{CH_{4}}\). J. Chem. Phys. 53, 3380 (1970)

    Article  ADS  Google Scholar 

  32. A.C. Luntz, R.G. Brewer, K.L. Foster, J.D. Swalen, Level crossing in \(\mathrm{CH_{4}}\) observed by nonlinear absorption. Phys. Rev. Lett. 23, 951 (1969)

    Article  ADS  Google Scholar 

  33. J.S. Levine, P. Boncyk, A. Javan, Observation of hyperfine level crossing in stimulated emission. Phys. Rev. Lett. 22, 267 (1969)

    Article  ADS  Google Scholar 

  34. G. Hermann, A. Scharmann, Untersuchungen zur Zeeman-Spektroskopie mit Hilfe nichtlinearer Resonanzen eines Multimoden Lasers. Z. Phys. 254, 46 (1972)

    Article  ADS  Google Scholar 

  35. W. Jastrzebski, M. Kolwas, Two-photon Hanle effect. J. Phys. B 17, L855 (1984)

    Article  ADS  Google Scholar 

  36. L. Allen, D.G. Jones, The helium-neon laser. Adv. Phys. 14, 479 (1965)

    Article  ADS  Google Scholar 

  37. C. Cohen-Tannoudji, Level-crossing resonances in atomic ground states. Comments At. Mol. Phys. 1, 150 (1970)

    Google Scholar 

  38. S. Haroche, Quantum beats and time resolved spectroscopy, in High Resolution Laser Spectroscopy, ed. by K. Shimoda. Topics Appl. Phys., vol. 13 (Springer, Berlin, 1976), p. 253

    Chapter  Google Scholar 

  39. H.J. Andrä, Quantum beats and laser excitation in fast beam spectroscopy, in Atomic Physics 4, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum, New York, 1975), p. 635

    Chapter  Google Scholar 

  40. H.J. Andrä, Fine structure, hyperfine structure and Lamb-shift measurements by the beam foil technique. Phys. Scr. 9, 257 (1974)

    Article  ADS  Google Scholar 

  41. R.M. Lowe, P. Hannaford, Observation of quantum beats in sputtered metal vapours, in 19th EGAS Conference, Dublin (1987)

    Google Scholar 

  42. W. Lange, J. Mlynek, Quantum beats in transmission by time resolved polarization spectroscopy. Phys. Rev. Lett. 40, 1373 (1978)

    Article  ADS  Google Scholar 

  43. J. Mlynek, W. Lange, A simple method of observing coherent ground-state transients. Opt. Commun. 30, 337 (1979)

    Article  ADS  Google Scholar 

  44. H. Harde, H. Burggraf, J. Mlynek, W. Lange, Quantum beats in forward scattering: subnanosecond studies with a mode-locked dye laser. Opt. Lett. 6, 290 (1981)

    Article  ADS  Google Scholar 

  45. J. Mlynek, K.H. Drake, W. Lange, Observation of transient and stationary Zeeman coherence by polarization spectroscopy, in Laser Spectroscopy IV, ed. by A.R.W. McKellar, T. Oka, B.P Stoicheff. Springer Ser. Opt. Sci., vol. 30 (Springer, Berlin, 1981), p. 616

    Google Scholar 

  46. G. Leuchs, S.J. Smith, E. Khawaja, H. Walther, Quantum beats observed in photoionization. Opt. Commun. 31, 313 (1979)

    Article  ADS  Google Scholar 

  47. M. Dubs, J. Mühlbach, H. Bitto, P. Schmidt, J.R. Huber, Hyperfine quantum beats and Zeeman spectroscopy in the polyatomic molecule propynol CHOCCHO. J. Chem. Phys. 83, 3755 (1985)

    Article  ADS  Google Scholar 

  48. H. Bitto, J.R. Huber, Molecular quantum beat spectroscopy. Opt. Commun. 80, 184 (1990); R.T. Carter, R. Huber, Quantum beat spectroscopy in chemistry. Chem. Soc. Rev. 29, 305 (2000)

    Article  ADS  Google Scholar 

  49. H. Ring, R.T. Carter, R. Huber, Creation and phase control of molecular coherences using pulsed magnetic fields. Laser Phys. 9, 253 (1999)

    ADS  Google Scholar 

  50. W. Scharfin, M. Ivanco, St. Wallace, Quantum beat phenomena in the fluorescence decay of the C(\({}^{1}_{}\mathrm{B}_{2}\)) state of \(\mathrm{SO_{2}}\). J. Chem. Phys. 76, 2095 (1982)

    Article  ADS  Google Scholar 

  51. P.J. Brucat, R.N. Zare, \(\mathrm{NO_{2}}\) \(A \, {}^{2}_{}\mathrm{B}_{2} \) state properties from Zeeman quantum beats. J. Chem. Phys. 78, 100 (1983); and 81, 2562 (1984)

    Article  ADS  Google Scholar 

  52. N. Ochi, H. Watanabe, S. Tsuchiya, S. Koda, Rotationally resolved laser-induced fluorescence and Zeeman quantum beat spectroscopy of the \(V \, {}^{1}_{}\mathrm {B}_{2} \) state of jet cooled \(\mathrm{CS_{2}}\). Chem. Phys. 113, 271 (1987)

    Article  ADS  Google Scholar 

  53. P. Schmidt, H. Bitto, J.R. Huber, Excited state dipole moments in a polyatomic molecule determined by Stark quantum beat spectroscopy. J. Chem. Phys. 88, 696 (1988)

    Article  ADS  Google Scholar 

  54. J.N. Dodd, G.W. Series, Time-resolved fluorescence spectroscopy, in Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York, 1978)

    Google Scholar 

  55. J. Mlynek, Neue optische Methoden der hochauflösenden Kohärenzspektroskopie an Atomen. Phys. Bl. 43, 196 (1987)

    Article  Google Scholar 

  56. A. Corney, Atomic and Laser Spectroscopy (Oxford Univ. Press, London, 1977)

    Google Scholar 

  57. B.J. Dalton, Cascade Zeeman quantum beats produced by stepwise excitation using broad-line laser pulses. J. Phys. B 20, 251, 267 (1987)

    Google Scholar 

  58. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Laser-induced population transfer adiabatic passage technique. Annu. Rev. Phys. Chem. 52, 763 (2001)

    Article  ADS  Google Scholar 

  59. R. Garcia-Fernandez, A. Ekers, L.P. Yatsenko, N.V. Vitanov, K. Bergmann, Control of Population flow in coherently driven quantum ladders. Phys. Rev. Lett. 95(1–4), 043001 (2005)

    Article  ADS  Google Scholar 

  60. N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Coherent manipulation of atoms and molecules by sequential pulses, in Adv. At. Mol. Opt. Phys., vol. 46 (Academic Press, New York, 2001), pp. 55–190

    Google Scholar 

  61. G. Alber, P. Zoller, Laser-induced excitation of electronic Rydberg wave packets. Contemp. Phys. 32, 185 (1991)

    Article  ADS  Google Scholar 

  62. A. Wolde, I.D. Noordam, H.G. Müller, A. Lagendijk, H.B. van Linden, Observation of radially localized atomic electron wave packets. Phys. Rev. Lett. 61, 2099 (1988)

    Article  ADS  Google Scholar 

  63. T. Baumert, V. Engel, C. Röttgermann, W.T. Strunz, G. Gerber, Femtosecond pump-probe study of the spreading and recurrance of a vibrational wave packet in \(\mathrm{Na_{2}}\). Chem. Phys. Lett. 191, 639 (1992)

    Article  ADS  Google Scholar 

  64. M. Gruebele, A.H. Zewail, Ultrashort reaction dynamics. Phys. Today 43, 24 (1990)

    Article  ADS  Google Scholar 

  65. M. Gruebele, G. Roberts, M. Dautus, R.M. Bowman, A.H. Zewail, Femtosecond temporal spectroscopy and direct inversion to the potentials: application to iodine. Chem. Phys. Lett. 166, 459 (1990)

    Article  ADS  Google Scholar 

  66. F.C. deSchryver, S.E. Fyter, G. Schweitzer, Femtochemistry (Wiley, New York, 2001)

    Book  Google Scholar 

  67. E. Schreiber, Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters. Springer Tracts in Modern Physics, vol. 143 (Springer, Berlin, 1999)

    Google Scholar 

  68. B.D. Bruner, H. Suchowski, N.V. Vitanov, Y. Silberberg, Spatiotemporal coherent control of three level systems. Phys. Rev. A 81, 063410 (2010); P.W. Brumer, M. Shapiro, Principles of the Quantum Control of Molecular Processes (Wiley, New York, 2003)

    Article  ADS  Google Scholar 

  69. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Chemistry—whither the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    Article  ADS  Google Scholar 

  70. J. Mlyneck, W. Lange, H. Harde, H. Burggraf, High resolution coherence spectroscopy using pulse trains. Phys. Rev. A 24, 1099 (1989)

    Article  ADS  Google Scholar 

  71. H. Lehmitz, W. Kattav, H. Harde, Modulated pumping in Cs with picosecond pulse trains, in Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York, 1986), p. 97

    Chapter  Google Scholar 

  72. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  73. E.L. Hahn, Spin echoes. Phys. Rev. 80, 580 (1950); C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. Springer Ser. Solid-State Sci., vol. 1 (Springer, Berlin, 1990)

    Article  ADS  MATH  Google Scholar 

  74. I.D. Abella, Echoes at optical frequencies, in Progress in Optics, vol. 7 (North-Holland, Amsterdam, 1969), p. 140

    Google Scholar 

  75. S.R. Hartmann, Photon echoes, in Lasers and Light, Readings from Scientific American (Freeman, San Francisco, 1969), p. 303

    Google Scholar 

  76. C.K.N. Patel, R.E. Slusher, Photon echoes in gases. Phys. Rev. Lett. 20, 1087 (1968)

    Article  ADS  Google Scholar 

  77. R.G. Brewer, Coherent optical transients. Phys. Today 30, 50 (1977)

    Article  ADS  Google Scholar 

  78. R.G. Brewer, A.Z. Genack, Optical coherent transients by laser frequency switching. Phys. Rev. Lett. 36, 959 (1976)

    Article  ADS  Google Scholar 

  79. R.G. Brewer, Coherent optical spectroscopy, in Frontiers in Laser Spectroscopy, ed. by R. Balian, S. Haroche, S. Lieberman (North-Holland, Amsterdam, 1977)

    Google Scholar 

  80. L.S. Vasilenko, N.Y. Rubtsova, Coherent spectroscopy of gaseous media: ways of increasing spectral resolution. Bull. Acad. Sci. USSR Phys. Ser. 53(12), 54 (1989)

    Google Scholar 

  81. R.G. Brewer, R.L. Shoemaker, Photon echo and optical nutation in molecules. Phys. Rev. Lett. 27, 631 (1971)

    Article  ADS  Google Scholar 

  82. P.R. Berman, J.M. Levy, R.G. Brewer, Coherent optical transient study of molecular collisions. Phys. Rev. A 11, 1668 (1975)

    Article  ADS  Google Scholar 

  83. Y.Y. Lion, I.-C. Chen, R.-K. Lee, Few Cycle self-induced transparency solitons. Phys. Rev. A 83, 043828 (2011)

    Article  ADS  Google Scholar 

  84. G. He, S.H. Liu, Physics of Nonlinear Optics (World Scientific, Singapore, 2003)

    Google Scholar 

  85. S.L. McCall, E.L. Hahn, Self-induced transparency. Phys. Rev. 183, 457 (1969)

    Article  ADS  Google Scholar 

  86. E. Arimondo, Coherent population trapping in laser spectroscopy. Prog. Opt. 35, 257 (1996)

    Article  Google Scholar 

  87. A. Nagel et al., Experimental realization of a coherent dark state magnetometer. Europhys. Lett. 44, 31–36 (1998); C. Affolderbach, M. Stähler, S. Knappe, R. Wynabds, An all optical high sensitivity magnetic gradiometer. Appl. Phys. B 75, 605–612 (2002)

    Article  ADS  Google Scholar 

  88. C. Freed, D.C. Spears, R.G. O’Donnell, Precision heterodyne calibration, in Laser Spectroscopy, ed. by R.G. Brewer, A. Mooradian (Plenum, New York, 1974), p. 17

    Google Scholar 

  89. F.R. Petersen, D.G. McDonald, F.D. Cupp, B.L. Danielson, Rotational constants of 12C16O2 from beats between Lamb-dip stabilized laser lines. Phys. Rev. Lett. 31, 573 (1973), also in Laser Spectroscopy, ed. by R.G. Brewer, A. Mooradian (Plenum, New York, 1974), p. 555

    Article  ADS  Google Scholar 

  90. T.J. Bridge, T.K. Chang, Accurate rotational constants of \(\mathrm {CO_{2}}\) from measurements of CW beats in bulk GaAs between \(\mathrm{CO_{2}}\) vibrational-rotational laser lines. Phys. Rev. Lett. 22, 811 (1969)

    Article  ADS  Google Scholar 

  91. L.A. Hackel, K.H. Casleton, S.G. Kukolich, S. Ezekiel, Observation of magnetic octupole and scalar spin–spin interaction in \(\mathrm{I_{2}}\) using laser spectroscopy. Phys. Rev. Lett. 35, 568 (1975)

    Article  ADS  Google Scholar 

  92. W.A. Kreiner, G. Magerl, E. Bonek, W. Schupita, L. Weber, Spectroscopy with a tunable sideband laser. Phys. Scr. 25, 360 (1982)

    Article  ADS  Google Scholar 

  93. J.L. Hall, L. Hollberg, T. Baer, H.G. Robinson, Optical heterodyne saturation spectroscopy. Appl. Phys. Lett. 39, 680 (1981)

    Article  ADS  Google Scholar 

  94. P. Verhoeve, J.J. terMeulen, W.L. Meerts, A. Dynamus, Sub-millimeter laser-sideband spectroscopy of \(\mathrm{H_{3}O^{+}}\). Chem. Phys. Lett. 143, 501 (1988)

    Article  ADS  Google Scholar 

  95. E.A. Whittaker, H.R. Wendt, H. Hunziker, G.C. Bjorklund, Laser FM spectroscopy with photochemical modulation: a sensitive high resolution technique for chemical intermediates. Appl. Phys. B 35, 105 (1984)

    Article  ADS  Google Scholar 

  96. F.T. Arecchi, A. Berné, P. Bulamacchi, High-order fluctuations in a single mode laser field. Phys. Rev. Lett. 88, 32 (1966)

    Article  ADS  Google Scholar 

  97. H.Z. Cummins, H.L. Swinney, Light beating spectroscopy. Progress in Optics, vol. 8 (North-Holland, Amsterdam, 1970), p. 134

    Google Scholar 

  98. E.O. DuBois (ed.), Photon Correlation Techniques. Springer Ser. Opt. Sci., vol. 38 (Springer, Berlin, 1983)

    Google Scholar 

  99. F. Yang, The molecular structure of green fluorescent protein. PhD thesis, Rice University, Houston, Texas, April 1999

    Google Scholar 

  100. R. Rigler, E.S. Elson (eds.), Fluorescence Correlation Spectroscopy: Theory and Applications. Springer Ser. Chem. Phys., vol. 65 (Springer, Berlin, 2001)

    Google Scholar 

  101. P. Schwille, E. Haustein, Fluorescence correlation spectroscopy. https://www.biophysics.org/Portals/1/PDFs/Education/schwille.pdf

  102. N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  103. C.L. Mehta, Theory of photoelectron counting. Progress in Optics, vol. 7 (North Holland, Amsterdam, 1970), p. 373

    Google Scholar 

  104. B. Saleh, Photoelectron Statistics. Springer Ser. Opt. Sci., vol. 6 (Springer, Berlin, 1978)

    Google Scholar 

  105. L. Mandel, Fluctuation of Light Beams. Progress in Optics, vol. 2 (North-Holland, Amsterdam, 1963), p. 181

    Google Scholar 

  106. A.J. Siegert, MIT Rad. Lab. Rpt. No. 465, 1943

    Google Scholar 

  107. E.O. Schulz-DuBois, High-resolution intensity interferometry by photon correlation, in [930], p. 6

    Google Scholar 

  108. P.P.L. Regtien (ed.), Modern Electronic Measuring Systems (Delft Univ. Press, Delft, 1978); P. Horrowitz, W. Hill, The Art of Electronics (Cambridge Univ. Press, Cambridge, 1980)

    Google Scholar 

  109. H.Z. Cummins, E.R. Pike (eds.), Photon Correlation and Light Spectroscopy (Plenum, New York, 1974)

    Google Scholar 

  110. E. Stelzer, H. Ruf, E. Grell, Analysis and resolution of polydispersive systems, in [930], p. 329

    Google Scholar 

  111. N.C. Ford, G.B. Bennedek, Observation of the spectrum of light scattered from a pure fluid near its critical point. Phys. Rev. Lett. 15, 649 (1965)

    Article  ADS  Google Scholar 

  112. R. Hanbury Brown, The Intensity Interferometer (Taylor and Francis, London, 1974)

    Google Scholar 

  113. F.T. Arecchi, A. Berné, P. Bulamacchi, High-order fluctuations in a single mode laser field. Phys. Rev. Lett. 88, 32 (1966)

    Article  ADS  Google Scholar 

  114. M. Adam, A. Hamelin, P. Bergé, Mise au point et étude d’une technique de spectrographie par battements de photons hétérodyne. Opt. Acta 16, 337 (1969)

    Article  ADS  Google Scholar 

  115. E. Haustein, P. Schwille, Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151 (2007)

    Article  Google Scholar 

  116. http://www.chm.bris.ac.uk/motm/GFP/GFPh.htm

  117. B. Indge, M. Baker, M. Rowland, A New Introduction to Human Biology (AQA Specification A) (Hodder Education, Murray, 2000)

    Google Scholar 

  118. R. Rigler, S. Wennmalm, L. Edman, Fluorescence Correlation Spectroscopy in Single Molecule Analysis. Springer Ser. Chem. Phys., vol. 65 (Springer, Berlin, 2001), p. 459

    Google Scholar 

  119. A.F. Harvey, Coherent Light (Wiley, London, 1970)

    Google Scholar 

  120. J.I. Steinfeld (ed.), Laser and Coherence Spectroscopy (Plenum, New York, 1978)

    Google Scholar 

  121. B.W. Shore, The Theory of Coherent Atomic Excitation, vols. 1, 2 (Wiley, New York, 1990)

    Google Scholar 

  122. L. Mandel, E. Wolf, Coherence and Quantum Optics I–IX, Proc. Rochester Conferences (Plenum, New York, 1961/1967/1973/1978/1984/1990/1996/2002/2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2015). Coherent Spectroscopy. In: Laser Spectroscopy 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44641-6_7

Download citation

Publish with us

Policies and ethics