Electron–Electron Interactions in Graphene Quantum Dots

Part of the NanoScience and Technology book series (NANO)


This chapter introduces the problem of electron–electron interactions, briefly describes several methods and their application to graphene quantum dots. The Hubbard model, the mean-field Hartree-Fock method, the Density Functional Theory and the configuration interaction (CI) method are introduced and applied to graphene quantum dots.


Matrix Element Hubbard Model Electron Interaction Degenerate State Density Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  2. 2.
    J.J. Quinn, K.-S. Yi, Solid State Physics: Principles and Modern Applications (Springer, Heidelberg, 2009)Google Scholar
  3. 3.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008)Google Scholar
  4. 4.
    P. Hawrylak, Phys. Rev. Lett. 59, 485 (1987)CrossRefADSGoogle Scholar
  5. 5.
    P. Hawrylak, S. Das Sarma, Advances in studies of electrons in low dimensional structures. Solid State Commun. 127, 753 (2003)CrossRefADSGoogle Scholar
  6. 6.
    P. Hawrylak, M. Korkusinski, Electronic and optical properties of self-assembled quantum dots, in Single Quantum Dots: Fundamentals, Applications, and New Concepts, vol. 90, Topics in Applied Physics, ed. by P. Michler (Springer, Heidelberg, 2003), pp. 25–92CrossRefGoogle Scholar
  7. 7.
    C.-Y. Hsieh, Y.P. Shim, M. Korkusinski, P. Hawrylak, Physics of triple quantum dot molecule with controlled electron numbers. Rep. Prog. Phys. 75, 114501 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Dresselhaus, M.S. Dresselhaus, Adv. Phys. 30(2), 139–326 (1981)CrossRefADSGoogle Scholar
  9. 9.
    K. Shung, Phys. Rev. B 34, 979993 (1986)Google Scholar
  10. 10.
    P. Hawrylak, Solid State Commun. 63, 241 (1987)CrossRefADSGoogle Scholar
  11. 11.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)CrossRefADSGoogle Scholar
  12. 12.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)CrossRefADSGoogle Scholar
  13. 13.
    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 10671125 (2012)CrossRefGoogle Scholar
  14. 14.
    M.A.H. Vozmediano, F. Guinea, Phys. Scr. T146, 014015 (2012)CrossRefADSGoogle Scholar
  15. 15.
    M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  16. 16.
    A.H. MacDonald, J. Jung, F. Zhang, Phys. Scr. T146, 014012 (2012)CrossRefADSGoogle Scholar
  17. 17.
    A. Hideo, D. Mildred (eds.), Physics of Graphene (Springer, Heidelberg, 2014)Google Scholar
  18. 18.
    L.E.F. Foa Torres, S. Roche, J.C. Charlier, Introduction to Graphene Based Nanomaterials: From Electronic Structure to Quantum Transport (Cambridge University Press, Cambridge, 2014)Google Scholar
  19. 19.
    C. Wang, D. Wong, A.V. Shytov, V.W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R.K. Kawakami, S.G. Louie, L.S. Levitov, M.F. Crommie, Science 340, 734 (2013)CrossRefADSGoogle Scholar
  20. 20.
    C. Toke, P.E. Lammert, V.H. Crespi, J.K. Jain, Phys. Rev. B 74, 235417 (2006)CrossRefADSGoogle Scholar
  21. 21.
    V.M. Apalkov, T. Chakraborty, Phys. Rev. Lett. 97, 126801 (2006)CrossRefADSGoogle Scholar
  22. 22.
    N. Shibata, K. Nomura, J. Phys. Soc. Jpn. 78, 104708 (2009)CrossRefADSGoogle Scholar
  23. 23.
    L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 7, 3112 (2007)CrossRefADSGoogle Scholar
  24. 24.
    T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Phys. Rev. Lett. 101, 096402 (2008)CrossRefADSGoogle Scholar
  25. 25.
    P. Koskinen, S. Malola, H. Häkkinen, Phys. Rev. Lett. 101, 115502 (2008)CrossRefADSGoogle Scholar
  26. 26.
    K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77, 235430 (2008)CrossRefADSGoogle Scholar
  27. 27.
    H. Sevincli, M. Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77, 195434 (2008)CrossRefADSGoogle Scholar
  28. 28.
    I. Ozfidan, M. Korkusinski, A.D. Güçlü, J. McGuire P. Hawrylak, Phys. Rev. B 89, 085310 (2014)Google Scholar
  29. 29.
    S. Sorella, E. Tosatti, Europhys. Lett. 19, 699 (1992)CrossRefADSGoogle Scholar
  30. 30.
    T.O. Wehling, E. Sasioglu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blügel, Phys. Rev. Lett. 106, 236805 (2011)CrossRefADSGoogle Scholar
  31. 31.
    E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Physics (Adam Hilger, New York, 1991)Google Scholar
  32. 32.
    B.J. Ransil, Rev. Mod. Phys. 32, 245 (1960)CrossRefADSGoogle Scholar
  33. 33.
    A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 103, 246805 (2009)CrossRefADSGoogle Scholar
  34. 34.
    P. Potasz, A.D. Güçlü, P. Hawrylak, Phys. Rev. B 82, 075425 (2010)CrossRefADSGoogle Scholar
  35. 35.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)CrossRefzbMATHADSGoogle Scholar
  36. 36.
    J. Hubbard, Proc. R. Soc. Lond. Ser. A 276, 238 (1963)CrossRefADSGoogle Scholar
  37. 37.
    K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C: Solid State Phys. 10, L271 (1977)CrossRefADSGoogle Scholar
  38. 38.
    K.A. Chao, J. Spałek, A.M. Oleś, Phys. Rev. B 18, 3453 (1978)CrossRefADSGoogle Scholar
  39. 39.
    M. Ezawa, Phys. Rev. B 76, 245415 (2007)CrossRefADSGoogle Scholar
  40. 40.
    J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)CrossRefADSGoogle Scholar
  41. 41.
    O.V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008)CrossRefADSGoogle Scholar
  42. 42.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetCrossRefADSGoogle Scholar
  43. 43.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    O. Voznyy, A.D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 83, 165417 (2011)CrossRefADSGoogle Scholar
  45. 45.
    A. Wensauer, M. Korkusiński, P. Hawrylak, Solid State Commun. 130, 115 (2004)CrossRefADSGoogle Scholar
  46. 46.
    C. Lanczos, J. Natl. Bureau Standards 45, 255 (1950)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey
  2. 2.Institute of PhysicsWrocław University of TechnologyWrocławPoland
  3. 3.Emerging Technologies Division, Quantum Theory GroupNational Research Council of CanadaOttawaCanada
  4. 4.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations