Advertisement

Graphene—Two-Dimensional Crystal

Chapter
  • 2.6k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

After a brief review of the history of research on carbon materials, this chapter describes fabrication methods, mechanical properties and electronic band structure of bulk graphene, including the tight-binding model, effective mass model of Dirac Fermions, Berry’s phase, chirality and absence of backscattering, and the effect of interlayer coupling on bilayer graphene.

Keywords

Graphene Layer Graphite Oxide Dirac Fermion Highly Orient Pyrolytic Graphite Honeycomb Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Ijima, Nature 354(6348), 5658 (1991)Google Scholar
  2. 2.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–164 (1985)ADSGoogle Scholar
  3. 3.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)zbMATHADSGoogle Scholar
  4. 4.
    P.A. Dirac, Proc. R. Soc. Lond. A 117, 610–624 (1928)zbMATHADSGoogle Scholar
  5. 5.
    H. Weyl, Proc. Natl. Acad. Sci. 15, 323 (1929)zbMATHADSGoogle Scholar
  6. 6.
    S.Y. Zhou, G.-H. Gweon, J. Graf, A.V. Fedorov, C.D. Spataru, R.D. Diehl, Y. Kopelevich, D.-H. Lee, S.G. Louie, A. Lanzara, Nature Phys. 2, 595–599 (2006)ADSGoogle Scholar
  7. 7.
    J.W. McClure, Phys. Rev. 108, 612 (1957)ADSGoogle Scholar
  8. 8.
    J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)ADSGoogle Scholar
  9. 9.
    G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. 140, A401–A412 (1965)ADSGoogle Scholar
  10. 10.
    G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)MathSciNetADSGoogle Scholar
  11. 11.
    D. Haldane, Phys. Rev. Lett. 61, 2015 (1988)MathSciNetADSGoogle Scholar
  12. 12.
    M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981)ADSGoogle Scholar
  13. 13.
    E.J. Mele, J.J. Ritsko, Phys. Rev. Lett. 43, 68 (1979)ADSGoogle Scholar
  14. 14.
    D.M. Hoffman, P.C. Eklund, R.E. Heinz, P.Hawrylak, K.R. Subbaswamy, Phys.Rev. B 31 3973 (1984)Google Scholar
  15. 15.
    J. Kouvetakis, R.B. Kaner, M.L. Sattler, N. Bartlett, J. Chem. Soc. Chem. Commun. 1986, 1758 (1986)Google Scholar
  16. 16.
    P. Hawrylak, K.R. Subbaswamy, Phys. Rev. Lett. 53, 2098–2101 (1984)ADSGoogle Scholar
  17. 17.
    G. Kirczenow, Phys. Rev. Lett. 55, 2810 (1985)ADSGoogle Scholar
  18. 18.
    M.S. Dresselhaus, G. Dresselhaus, J.E. Fisher, Phys. Rev. B 15, 3180 (1977)ADSGoogle Scholar
  19. 19.
    R.C. Tatar, S. Rabii, Phys. Rev. B 25, 4126 (1982)ADSGoogle Scholar
  20. 20.
    D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)ADSGoogle Scholar
  21. 21.
    J. Blinowski, N.H. Hau, C. Rigaux, J.P. Vieren, R. Le Toullec, G. Furdin, A. Herold, J. Melin, J. Phys. (Paris) 41, 47 (1980)Google Scholar
  22. 22.
    W.-K. Kenneth Shung. Phys. Rev. B 34, 979 (1986)Google Scholar
  23. 23.
    P. Hawrylak, Solid State Commun. 63, 241 (1987)ADSGoogle Scholar
  24. 24.
    K.W.-K. Shung, G.D. Mahan, Phys. Rev. B 38, 3856 (1988)ADSGoogle Scholar
  25. 25.
    H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Anorg. Allg. Chem. 316, 119 (1962)Google Scholar
  26. 26.
    H.P. Boehm, R. Setton, E. Stumpp, Carbon 24, 241 (1986)Google Scholar
  27. 27.
    J.T. Grant, T.W. Haas, Surf. Sci. 21, 76 (1970)ADSGoogle Scholar
  28. 28.
    J.M. Blakely, J.S. Kim, H.C. Potter, J. Appl. Phys. 41, 2693 (1970)ADSGoogle Scholar
  29. 29.
    A.J. van Bommel, J.E. Crombeen, A. van Tooren, Surf. Sci. 48, 463 (1975)ADSGoogle Scholar
  30. 30.
    A. Nagashima, K. Nuka, K. Satoh, H. Itoh, T. Ichinokawa, C. Oshima, S. Otani, Surf. Sci. 287–288, 609 (1993)Google Scholar
  31. 31.
    K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Phys. Rev. B 42, 2842 (1990)ADSGoogle Scholar
  32. 32.
    Y. Ohashi, T. Koizumi, T. Yoshikawa, T. Hironaka, K. Shiiki, TANSO 180, 235 (1997)Google Scholar
  33. 33.
    M. Müller, C. Kbel, K. Müllen, Chem. Eur. J. 4, 2099 (1998)Google Scholar
  34. 34.
    N. Tyutyulkov, G. Madjarova, F. Dietz, K. Müllen, J. Phys. Chem. B 102, 10183 (1998)Google Scholar
  35. 35.
    X. Lu, M. Yu, H. Huang, R. S Ruoff. Nanotechnology 10, 269 (1999)ADSGoogle Scholar
  36. 36.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSGoogle Scholar
  37. 37.
    C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004)Google Scholar
  38. 38.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. lett. 97, 187401 (2006)ADSGoogle Scholar
  39. 39.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSGoogle Scholar
  40. 40.
    A.K. Geim, Rev. Mod. Phys. 83, 851 (2011)ADSGoogle Scholar
  41. 41.
    Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSGoogle Scholar
  42. 42.
    K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)ADSGoogle Scholar
  43. 43.
    K.S. Novoselov, A.K. Geim, Nature 6, 183 (2007)Google Scholar
  44. 44.
    M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Phys. Rev. Lett. 97, 266405 (2006)ADSGoogle Scholar
  45. 45.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 2, 620 (2006)ADSGoogle Scholar
  46. 46.
    M.I. Katsnelson, Materials Today 10, 20–27 (2007)Google Scholar
  47. 47.
    A.F. Young, P. Kim, Nature Phys. 5, 222 (2009)ADSGoogle Scholar
  48. 48.
    N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009)ADSGoogle Scholar
  49. 49.
    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro, Neto. Rev. Mod. Phys. 84, 10671125 (2012)Google Scholar
  50. 50.
    S. Sorella, E. Tosatti, Europhys. Lett. 19, 699 (1992)ADSGoogle Scholar
  51. 51.
    S. Sorella, Y. Otsuka, S. Yunoki, Scientific Reports 2, 992 (2012)ADSGoogle Scholar
  52. 52.
    F. Wang, Y.B. Zhang, C.S. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320, 206 (2008)ADSGoogle Scholar
  53. 53.
    K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101, 196405 (2008)ADSGoogle Scholar
  54. 54.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)ADSGoogle Scholar
  55. 55.
    P. Avouris, F. Xia, MRS Bulletin 37, 1225 (2012)Google Scholar
  56. 56.
    L. Yang, J. Deslippe, C.-H. Park, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009)ADSGoogle Scholar
  57. 57.
    Y. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009)ADSGoogle Scholar
  58. 58.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)ADSGoogle Scholar
  59. 59.
    F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 4, 839 (2009)ADSGoogle Scholar
  60. 60.
    T. Mueller, F. Xia, P. Avouris, Nature Photon. 4, 297 (2010)Google Scholar
  61. 61.
    T. Ihn, J. Gttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmller, T. Frey, S. Drscher, C. Stampfer, K. Ensslin, Materials Today 44, 20–27 (2010)Google Scholar
  62. 62.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)ADSGoogle Scholar
  63. 63.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klimac, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)ADSGoogle Scholar
  64. 64.
    K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett. 101, 096802 (2008)ADSGoogle Scholar
  65. 65.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)ADSGoogle Scholar
  66. 66.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)ADSGoogle Scholar
  67. 67.
    B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nature 3, 192 (2007)Google Scholar
  68. 68.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nature Phys. 3, 172 (2007)ADSGoogle Scholar
  69. 69.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nature 6, 652 (2007)Google Scholar
  70. 70.
    S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Nature 467, 190 (2010)ADSGoogle Scholar
  71. 71.
    V. Yu, E. Whiteway, J. Maassen, M. Hilke, Phys. Rev. B 84, 205407 (2011)ADSGoogle Scholar
  72. 72.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)ADSGoogle Scholar
  73. 73.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)ADSGoogle Scholar
  74. 74.
    Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E.L. Samuel, C. Kittrell, J.M. Tour, ACS Nano 6, 9110 (2012)Google Scholar
  75. 75.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)ADSGoogle Scholar
  76. 76.
    J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A. de Heer, P.N. First, E.H. Conrada, C.A. Jeffrey, C. Berger, Appl. Phys. Lett. 89, 143106 (2006)ADSGoogle Scholar
  77. 77.
    J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008)ADSGoogle Scholar
  78. 78.
    J. Hass, W.A. de Heer, E.H. Conrad, J. Phys.: Condens. Matter 20, 323202 (2008)Google Scholar
  79. 79.
    K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nature Mater. 8, 203 (2009)ADSGoogle Scholar
  80. 80.
    J. Hicks, A. Tejeda, A.A. Taleb-Ibrahimi, M.S.M.S. Nevius, F.F. Wang, K.K. Shepperd, J.J. Palmer, F. Bertran, P. Le Fvre, J. Kunc, W.A. de Heer, C. Berger, E.H. Conrad, A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene. Nature Phys. 9, 49 (2013)ADSGoogle Scholar
  81. 81.
    J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stepniewski, J.M. Baranowski, J. Appl. Phys. 105, 023503 (2009)Google Scholar
  82. 82.
    J. Krupka, W. Strupiński, Appl. Phys. Lett. 96, 082101 (2010)ADSGoogle Scholar
  83. 83.
    W. Strupiński, K. Grodecki, A. Wysmołek, R. Stepniewski, T. Szkopek, P.E. Gaskell, A. Grüneis, D. Haberer, R. Bożek, J. Krupka, J.M. Baranowski, Nano Lett. 11, 1786 (2011)Google Scholar
  84. 84.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  85. 85.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)ADSGoogle Scholar
  86. 86.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)ADSGoogle Scholar
  87. 87.
    M.J. McAllister, J. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prudhomme, I.A. Aksay, Chem. Mater. 19, 4396 (2007)Google Scholar
  88. 88.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)Google Scholar
  89. 89.
    I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008)ADSGoogle Scholar
  90. 90.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, PNAS 102, 10451 (2005)ADSGoogle Scholar
  91. 91.
    R.E. Peierls, Helv. Phys. Acta 7, 81 (1934)Google Scholar
  92. 92.
    R.E. Peierls, Ann. Inst. H. Poincare 5, 177 (1935)MathSciNetzbMATHGoogle Scholar
  93. 93.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Part I, Pergamon, Oxford, UK, 1980)Google Scholar
  94. 94.
    N.D. Mermin, Phys. Rev. 176, 250 (1968)ADSGoogle Scholar
  95. 95.
    J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Nano Lett. 8, 3582 (2008)ADSGoogle Scholar
  96. 96.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nature Nanotech. 4, 562 (2007)ADSGoogle Scholar
  97. 97.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSGoogle Scholar
  98. 98.
    J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008)ADSGoogle Scholar
  99. 99.
    T.J. Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass, K.S. Novoselov, M.I. Katsnelson, A.K. Geim, Nano Lett. 8, 2442 (2008)ADSGoogle Scholar
  100. 100.
    N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005)ADSGoogle Scholar
  101. 101.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSGoogle Scholar
  102. 102.
    S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Phys. Rev. B 66, 035412 (2002)ADSGoogle Scholar
  103. 103.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSGoogle Scholar
  104. 104.
    G. Herzberg, H.C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963)Google Scholar
  105. 105.
    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)zbMATHADSGoogle Scholar
  106. 106.
    T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn. 71, 1318 (2002)ADSGoogle Scholar
  107. 107.
    E. McCann, V.I. Falko, Phys. Rev. Lett. 96, 086805 (2006)ADSGoogle Scholar
  108. 108.
    T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)ADSGoogle Scholar
  109. 109.
    E. McCann, D.S.L. Abergel, V.I. Fal’ko, Solid State Commun. 143, 110 (2007)ADSGoogle Scholar
  110. 110.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro, Neto. Phys. Rev. Lett. 99, 216802 (2007)ADSGoogle Scholar
  111. 111.
    J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7, 151 (2008)ADSGoogle Scholar
  112. 112.
    K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009)ADSGoogle Scholar
  113. 113.
    Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.A. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey
  2. 2.Institute of PhysicsWrocław University of TechnologyWrocławPoland
  3. 3.Emerging Technologies Division, Quantum Theory GroupNational Research Council of CanadaOttawaCanada
  4. 4.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations