Skip to main content

Recruitment of Skeletal Muscle Progenitors to Secondary Sites: A Role for CXCR4/SDF-1 Signalling in Skeletal Muscle Development

  • Chapter
  • First Online:
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 56))

Abstract

During embryonic development, myogenesis occurs in different functional muscle groups at different time points depending on the availability of their final destinations. Primary trunk muscle consists of the intrinsic dorsal (M. erector spinae) and ventral (cervical, thoracic, abdominal) muscles. In contrast, secondary trunk muscles are established from progenitor cells that have migrated initially from the somites into the limb buds and thereafter returned to the trunk. Furthermore, craniofacial muscle constitutes a group that originates from four different sources and employs a different set of regulatory molecules. Development of muscle groups at a distance from their origins involves the maintenance of a pool of progenitor cells capable of proliferation and directed cell migration. We review here the data concerning somite-derived progenitor cell migration to the limbs and subsequent retrograde migration in the establishment of secondary trunk muscle in chicken and mouse. We review the function of SDF-1 and CXCR4 in the control of this process referring to our previous work in shoulder muscle and cloacal/perineal muscle development. Some human anatomical variations and malformations of secondary trunk muscles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    PubMed  CAS  Google Scholar 

  • Aulehla A, Pourquié O (2006) On periodicity and directionality of somitogenesis. Anat Embryol 211(Suppl 1):3–8

    PubMed  Google Scholar 

  • Baban A, Torre M, Bianca S, Buluggiu A, Rossello MI, Calevo MG, Valle M, Ravazzolo R, Jasonni V, Lerone M (2009) Poland syndrome with bilateral features: case description with review of the literature. Am J Med Genet A 149A(7):1597–1602

    PubMed  Google Scholar 

  • Bagri A, Gurney T, He X, Zou Y, Littman DR, Tessier-Lavigne M, Pleasure SJ (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129(18):4249–4260

    PubMed  CAS  Google Scholar 

  • Bailey PM, Tzarnas CD (1999) The sternalis muscle: a normal finding encountered during breast surgery. Plast Reconstr Surg 103(4):1189–1190

    PubMed  CAS  Google Scholar 

  • Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14(3):171–179

    PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132(4):689–701

    PubMed  CAS  Google Scholar 

  • Ben-Yair R, Kalcheim C (2008) Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 180(3):607–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ben-Yair R, Kahane N, Kalcheim C (2003) Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development 130(18):4325–4336

    PubMed  CAS  Google Scholar 

  • Beresford B (1983) Brachial muscles in the chick embryo: the fate of individual somites. J Embryol Exp Morphol 77:99–116

    PubMed  CAS  Google Scholar 

  • Beresford B, Le Lievre C, Rathbone MP (1978) Chimaera studies of the origin and formation of the pectoral musculature of the avian embryo. J Exp Zool 205(2):321–326

    PubMed  CAS  Google Scholar 

  • Bergman RA, Thompson SA, Saadeh FA (1988) Anomalous fascicle and high origin of latissimus dorsi compensating for absence of serratus anterior. Anat Anz 167(2):161–164

    PubMed  CAS  Google Scholar 

  • Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12(6):725–730

    PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771

    PubMed  CAS  Google Scholar 

  • Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996a) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382(6594):829–833

    PubMed  CAS  Google Scholar 

  • Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996b) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3):1101–1109

    PubMed  CAS  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120(3):603–612

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Christ B (1999) Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res 296(1):199–212

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Müller TS, Wilting J, Christ B, Birchmeier C (1996a) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 179(1):303–308

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Wilting J, Ebensperger C, Christ B (1996b) The formation of somite compartments in the avian embryo. Int J Dev Biol 40(1):411–420

    PubMed  CAS  Google Scholar 

  • Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10 T1/2 fibroblasts. EMBO J 8(3):701–709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun T, Bober E, Winter B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 9(3):821–831

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development 127(2):437–445

    PubMed  CAS  Google Scholar 

  • Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwińska AM, Czarnecka-Góra M, Stremińska W, Jańczyk-Ilach K, Ciemerych MA (2012) Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 104(12):722–737

    PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    PubMed  CAS  Google Scholar 

  • Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768(4):952–963

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B, Wu GX, Pei G (2000) Beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Biol Chem 275(4):2479–2485

    PubMed  CAS  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191(5):381–396

    PubMed  CAS  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174(1):23–32

    PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1972) Experimentelle Untersuchungen zur Somitenentstehung beim Hühnerembryo (Experimental analysis of somitogenesis in the chick embryo). Z Anat Entwicklungsgesch 138(1):82–97

    PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Uber den Ursprung der Flügelmuskulatur. Experimentelle Untersuchungen mit Wachtel- und Hühnerembryonen (Origin of wing musculature. Experimental studies on quail and chick embryos). Experientia 30(12):1446–1449

    PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150(2):171–186

    PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M, Wachtler F (1982) On the origin, distribution and determination of avian limb mesenchymal cells. Prog Clin Biol Res 110:281–291

    PubMed  Google Scholar 

  • Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol 202(3):179–194

    PubMed  CAS  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol 208(5):333–350

    PubMed  Google Scholar 

  • Cinnamon Y, Kahane N, Kalcheim C (1999) Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126(19):4305–4315

    PubMed  CAS  Google Scholar 

  • Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenführ M, Ataliotis P, Baldini A, Scambler P, Francis-West P (2007) Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn 236(2):353–363

    PubMed  CAS  Google Scholar 

  • David TJ, Winter RM (1985) Familial absence of the pectoralis major, serratus anterior, and latissimus dorsi muscles. J Med Genet 22(5):390–392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–666

    PubMed  CAS  Google Scholar 

  • Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125(12):2235–2249

    PubMed  CAS  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126(8):1621–1629

    PubMed  CAS  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111(5):647–659

    PubMed  CAS  Google Scholar 

  • Dong F, Sun X, Liu W, Ai D, Klysik E, Lu M, Hadley J, Antoni L, Chen L, Baldini A, Francis-West P, Martin JF (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133(24):4891–4899

    PubMed  CAS  Google Scholar 

  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72

    PubMed  CAS  Google Scholar 

  • Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85(7):1149–1158

    PubMed  CAS  Google Scholar 

  • Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3(5):628–640

    PubMed  CAS  Google Scholar 

  • Evans DJR, Valasek P, Schmidt C, Patel K (2006) Skeletal muscle translocation in vertebrates. Anat Embryol 211(Suppl 1):43–50

    PubMed  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872–877

    PubMed  CAS  Google Scholar 

  • Franz T, Kothary R, Surani MA, Halata Z, Grim M (1993) The Splotch mutation interferes with muscle development in the limbs. Anat Embryol 187(2):153–160

    PubMed  CAS  Google Scholar 

  • Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167(8):4747–4757

    PubMed  CAS  Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120(4):957–971

    PubMed  CAS  Google Scholar 

  • Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Genet 23(8):365–369

    PubMed  CAS  Google Scholar 

  • Grim M (1971) Development of the primordia of the latissimus dorsi muscle of the chicken. Folia Morphol (Praha) 19(3):252–258

    CAS  Google Scholar 

  • Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127(2):413–424

    PubMed  CAS  Google Scholar 

  • Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125(17):3461–3472

    PubMed  CAS  Google Scholar 

  • Hartwig NG, Steffelaar JW, Van de Kaa C, Schueler JA, Vermeij-Keers C (1991) Abdominal wall defect associated with persistent cloaca. The embryologic clues in autopsy. Am J Clin Pathol 96(5):640–647

    PubMed  CAS  Google Scholar 

  • Hegde HR, Shokeir MH (1982) Posterior shoulder girdle abnormalities with absence of pectoralis major muscle. Am J Med Genet 13(3):285–293

    PubMed  CAS  Google Scholar 

  • Heymann S, Koudrova M, Arnold H, Köster M, Braun T (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Dev Biol 180(2):566–578

    PubMed  CAS  Google Scholar 

  • Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D, Jain RK (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci U S A 108(1):302–307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol 202(5):369–374

    PubMed  CAS  Google Scholar 

  • Huang R, Zhi Q, Izpisua-Belmonte JC, Christ B, Patel K (1999) Origin and development of the avian tongue muscles. Anat Embryol 200(2):137–152

    PubMed  CAS  Google Scholar 

  • Huang R, Pu Q, Patel K (2014) The lateral plate mesoderm: a novel source of skeletal muscle. In: Brand-Saberi B (ed) Vertebrate myogenesis: stem cells and precursors, Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Inomata Y, Tanaka K, Ozawa K (1989) Sacral anomaly and pelvic floor muscle in imperforate anus: a clinical and experimental study. Nihon Geka Hokan 58(2):217–230

    PubMed  CAS  Google Scholar 

  • Jagla K, Dollé P, Mattei MG, Jagla T, Schuhbaur B, Dretzen G, Bellard F, Bellard M (1995) Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev 53(3):345–356

    PubMed  CAS  Google Scholar 

  • Jones HW (1926) Congenital absence of the pectoral muscles. Br Med J 2(3418):59–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296(1):161–173

    PubMed  CAS  Google Scholar 

  • Keith A, George H, Patrick MJ (2005) Pediaric surgery, 4th edn. Elsevier Saunders, Philadelphia, pp 496–517

    Google Scholar 

  • Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, Luster AD (2001) SDF-1 alpha induces chemotaxis and enhances sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128:1971–1981

    PubMed  CAS  Google Scholar 

  • Knaut H, Werz C, Geisler R, Nüsslein-Volhard C (2003) A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421(6920):279–282

    PubMed  CAS  Google Scholar 

  • Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35(3):233–245

    PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23(7):879–894

    PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20(5):857–869

    PubMed  CAS  Google Scholar 

  • Kuratani S (2008) Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 50(Suppl 1):S189–94

    PubMed  Google Scholar 

  • Lanser ME, Fallon JF (1987) Development of wing-bud-derived muscles in normal and wingless chick embryos: a computer-assisted three-dimensional reconstruction study of muscle pattern formation in the absence of skeletal elements. Anat Rec 217(1):61–78

    PubMed  CAS  Google Scholar 

  • Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M (2003) Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42(2):139–148

    PubMed  Google Scholar 

  • Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ (2002) CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100(7):2597–2606

    PubMed  CAS  Google Scholar 

  • Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 99:7090–7095

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95(16):9448–9453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mansouri A, Hallonet M, Gruss P (1996) Pax genes and their roles in cell differentiation and development. Curr Opin Cell Biol 8(6):851–857

    PubMed  CAS  Google Scholar 

  • Marcelle C, Wolf J, Bronner-Fraser M (1995) The in vivo expression of the FGF receptor FREK mRNA in avian myoblasts suggests a role in muscle growth and differentiation. Dev Biol 172(1):100–114

    PubMed  CAS  Google Scholar 

  • Masyuk M, Abduelmula A, Morosan-Puopolo G, Ödemis V, Rehimi R, Khalida N, Yusuf F, Engele J, Tamamura H, Theiss C, Brand-Saberi B (2014) Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol. doi:10.1007/s00418-014-1237-7

  • Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436(7049):347–355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mauger A (1972a) Rôle du mésoderme somitique dans le développement du plumage dorsal chez l’embryon de Poulet. I. Origine, capacités de régulation et détermination du mésoderme plumigène (The role of somitic mesoderm in the development of dorsal plumage in chick embryos. I. Origin, regulative capacity and determination of the plumage-forming mesoderm). J Embryol Exp Morphol 28(2):313–341

    PubMed  CAS  Google Scholar 

  • Mauger A (1972b) Rôle du mésoderme somitique dans le développement du plumage dorsal chez l’embryon de Poulet. II. Régionalisation du mésoderme plumigène (The role of somitic mesoderm in the development of dorsal plumage in chick embryos. II. Regionalization of the plumage-forming mesoderm). J Embryol Exp Morphol 28(2):343–366

    PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mennerich D, Schäfer K, Braun T (1998) Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb. Mech Dev 73(2):147–158

    PubMed  CAS  Google Scholar 

  • Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87(3):1089–1093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129(3):573–583

    PubMed  CAS  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    PubMed  Google Scholar 

  • Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 91(6):2305–2309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, Matsushima K, Yoshida N, Springer TA, Kishimoto T (1996) Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci U S A 93(25):14726–14729

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nagasawa T, Tachibana K, Kishimoto T (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 10(3):179–185

    PubMed  CAS  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325(5937):193–196

    PubMed  CAS  Google Scholar 

  • Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135(4):647–657

    PubMed  CAS  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235(5):1194–1218

    PubMed  CAS  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207(5):575–601

    PubMed  PubMed Central  Google Scholar 

  • Odemis V, Lamp E, Pezeshki G, Moepps B, Schilling K, Gierschik P, Littman DR, Engele J (2005) Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis. Mol Cell Neurosci 30(4):494–505

    PubMed  Google Scholar 

  • Olivera-Martinez I, Coltey M, Dhouailly D, Pourquié O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127(21):4611–4617

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Missier S, Fraboulet S, Thélu J, Dhouailly D (2002) Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome. Development 129(20):4763–4772

    PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Thélu J, Dhouailly D (2004) Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol 48(2–3):93–101

    PubMed  CAS  Google Scholar 

  • Ordahl CP, Le Douarin NM (1992) Two myogenic lineages within the developing somite. Development 114(2):339–353

    PubMed  CAS  Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111(4):1097–1107

    PubMed  CAS  Google Scholar 

  • Paraskevas GK, Raikos A (2010) Bilateral pectoral musculature malformations with concomitant vascular anomaly. Folia Morphol (Warsz) 69(3):187–191

    CAS  Google Scholar 

  • Poland A (1841) Deficiency of the pectoral muscles. Guys Hosp Rep 6:191–193

    Google Scholar 

  • Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G (2004) CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y Acad Sci 1030:162–169

    PubMed  CAS  Google Scholar 

  • Pownall ME, Emerson CP (1992) Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 151(1):67–79

    PubMed  CAS  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    PubMed  CAS  Google Scholar 

  • Prahlad KV, Skala G, Jones DG, Briles WE (1979) Limbless: a new genetic mutant in the chick. J Exp Zool 209(3):427–434

    PubMed  CAS  Google Scholar 

  • Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118(Pt 5):1071–1080

    PubMed  CAS  Google Scholar 

  • Raikos A, Paraskevas GK, Tzika M, Faustmann P, Triaridis S, Kordali P, Kitsoulis P, Brand-Saberi B (2011a) Sternalis muscle: an underestimated anterior chest wall anatomical variant. J Cardiothorac Surg 6:73

    PubMed  PubMed Central  Google Scholar 

  • Raikos A, Paraskevas GK, Yusuf F, Kordali P, Ioannidis O, Brand-Saberi B (2011b) Sternalis muscle: a new crossed subtype, classification, and surgical applications. Ann Plast Surg 67(6):646–648

    PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21(3):363–371

    PubMed  CAS  Google Scholar 

  • Rehimi R, Khalida N, Yusuf F, Dai F, Morosan-Puopolo G, Brand-Saberi B (2008) Stromal-derived factor-1 (SDF-1) expression during early chick development. Int J Dev Biol 52(1):87–92

    PubMed  CAS  Google Scholar 

  • Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B (2010) A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 239(6):1622–1631

    PubMed  CAS  Google Scholar 

  • Rhodes SJ, Konieczny SF (1989) Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev 3(12B):2050–2061

    PubMed  CAS  Google Scholar 

  • Rios AC, Marcelle C (2009) Head muscles: aliens who came in from the cold? Dev. Cell 16(6):779–780

    CAS  Google Scholar 

  • Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17(3):203–209

    PubMed  CAS  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75(7):1351–1359

    PubMed  CAS  Google Scholar 

  • Sambasivan R, Tajbakhsh S (2014) Adult skeletal muscle stem cells. In: Brand-Saberi B (ed) Vertebrate myogenesis: stem cells and precursors, Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Kelly R, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16(6):810–821

    PubMed  CAS  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138(12):2401–2415

    PubMed  CAS  Google Scholar 

  • Sassoon DA (1993) Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis. Dev Biol 156(1):11–23

    PubMed  CAS  Google Scholar 

  • Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is a mediator between limb patterning and muscle development. Development 126(21):4885–4893

    PubMed  CAS  Google Scholar 

  • Schäfer K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nat Genet 23(2):213–216

    PubMed  Google Scholar 

  • Scharner J, Zammit PS (2011) The muscle satellite cell at 50: the formative years. Skelet Muscle 1(1):28

    PubMed  PubMed Central  Google Scholar 

  • Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci U S A 104(14):5907–5912

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28(3):495–500

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    PubMed  CAS  Google Scholar 

  • Stebler J, Spieler D, Slanchev K, Molyneaux KA, Richter U, Cojocaru V, Tarabykin V, Wylie C, Kessel M, Raz E (2004) Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev Biol 272(2):351–361

    PubMed  CAS  Google Scholar 

  • Sun Y, Cheng Z, Ma L, Pei G (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277(51):49212–49219

    PubMed  CAS  Google Scholar 

  • Sun Y, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89(3):462–473

    PubMed  CAS  Google Scholar 

  • Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393(6685):591–594

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89(1):127–138

    PubMed  CAS  Google Scholar 

  • Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R (2010) The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137(17):2961–2971

    PubMed  CAS  Google Scholar 

  • Tzahor E (2014) Head Muscle Development. In: Brand-Saberi B (ed) Vertebrate myogenesis: stem cells and precursors, Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Tzahor E, Kempf H, Mootoosamy RC, Poon AC, Abzhanov A, Tabin CJ, Dietrich S, Lassar AB (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17(24):3087–3099

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valasek P, Evans DJR, Maina F, Grim M, Patel K (2005) A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Development 132(3):447–458

    PubMed  CAS  Google Scholar 

  • Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM, Minchin J, He L, Christ B, Brooks G, Sang H, Evans DJ, Logan M, Huang R, Patel K (2011) Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 357(1):108–116

    PubMed  CAS  Google Scholar 

  • Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C (2005) CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19(18):2187–2198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–122

    PubMed  CAS  Google Scholar 

  • Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A, Moreno-Ortíz MC, Martínez-A C, Mellado M (1999) The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13(13):1699–1710

    PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251(4995):761–766

    PubMed  CAS  Google Scholar 

  • Williams PL, Bannister LH (eds) (1995) Gray’s anatomy. The anatomical basis of medicine and surgery, 38th edn. Livingstone, New York, NY

    Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120(4):785–796

    PubMed  CAS  Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi Q, Köntges G, Ordahl CP, Christ B (1995) Angiogenic potential of the avian somite. Dev Dyn 202(2):165–171

    PubMed  CAS  Google Scholar 

  • Wilting J, Schneider M, Papoutski M, Alitalo K, Christ B (2000) An avian model for studies of embryonic lymphangiogenesis. Lymphology 33(3):81–94

    PubMed  CAS  Google Scholar 

  • Wilting J, Papoutsi M, Othman-Hassan K, Rodriguez-Niedenführ M, Pröls F, Tomarev SI, Eichmann A (2001) Development of the avian lymphatic system. Microsc Res Tech 55(2):81–91

    PubMed  CAS  Google Scholar 

  • Yusuf F, Brand-Saberi B (2006) The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol 211(Suppl 1):21–30

    PubMed  Google Scholar 

  • Yusuf F, Brand-Saberi B (2012) Myogenesis and muscle regeneration. Histochem Cell Biol 138(2):187–199

    PubMed  CAS  Google Scholar 

  • Yusuf F, Rehimi R, Dai F, Brand-Saberi B (2005) Expression of chemokine receptor CXCR4 during chick embryo development. Anat Embryol 210(1):35–41

    PubMed  CAS  Google Scholar 

  • Yusuf F, Rehimi R, Moroşan-Puopolo G, Dai F, Zhang X, Brand-Saberi B (2006) Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos. Dev Dyn 235(11):3007–3015

    PubMed  CAS  Google Scholar 

  • Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121(Pt 18):2975–2982

    PubMed  CAS  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the excellent technical support of Swantje Wulff, Rana Houmany, and Anke Lodwig. We furthermore thank our co-authors in original papers quoted, in particular, Carsten Theiss, Faisal Yusuf, and Gabriela Morosan-Puopolo for their excellent work. The authors’ special thanks are due to Helga Schulze for preparing the artwork of this article. We thank Daniel Terheyden-Keighley for his advice regarding language aspects of this manuscript. Part of the original work reviewed here has been supported by the DFG (Br 957/5-1, 5-2, 5-3), and the EU’s Sixth Framework Network of Excellence MYORES (511978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Brand-Saberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masyuk, M., Brand-Saberi, B. (2015). Recruitment of Skeletal Muscle Progenitors to Secondary Sites: A Role for CXCR4/SDF-1 Signalling in Skeletal Muscle Development. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44608-9_1

Download citation

Publish with us

Policies and ethics