Skip to main content

Self-energy

  • Chapter
  • First Online:
  • 3299 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 181))

Abstract

Single-particle excitations cannot be described by non-interacting particles with infinite lifetime. Rather, due to interactions with other particles they are ‘dressed’ as expressed by their self-energy. In contrast to the solutions of the Hartree-Fock and Kohn-Sham equations, the Dyson equation leads to quasiparticles. The dynamics of the screening reaction, i.e., the frequency-dependent correlation contribution to the self-energy, is responsible for spectral functions which differ from a Dirac \(\delta \)-function at a certain energy. Rather, a Lorentzian-broadened peak at a shifted energy with reduced spectral weight may occur. It represents a quasiparticle with finite lifetime. The rest of the spectral weight appears in incoherent spectral contributions at other energies. The description of quasiparticles requires a self-consistent procedure since the self-energy and the screening/vertex functions appearing therein depend on the unknown Green function. If one is mainly interested in the energy position and spectral weight of the main quasiparticle peak, the standard approach is based on the GW approximation and a starting electronic structure derived from a (generalized) Kohn-Sham equation. We demonstrate that this procedure leads to single-particle excitation energies in good agreement with measured values. This holds especially for the opening of the fundamental gap of non-metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.W. Godby, M. Schlüter, L.J. Sham, Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B 36, 6497–6500 (1987)

    Article  ADS  Google Scholar 

  2. A. Fleszar, W. Hanke, Spectral properties of quasiparticles in a semiconductor. Phys. Rev. B 56, 10228–10232 (1997)

    Article  ADS  Google Scholar 

  3. L. Hedin, S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, in Solid State Physics, vol 23, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York 1969), pp. 1–181

    Google Scholar 

  4. A.M. Zagoskin, Quantum Theory of Many-Body Systems. Techniques and Applications (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  5. W. Jones, N.H. March, Theoretical Solid State Physics. Perfect Lattices in Equilibrium, vol. 1 (Dover Publications Inc, New York, 1973)

    Google Scholar 

  6. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall Inc, Englewood Cliffs, 1963)

    MATH  Google Scholar 

  7. H. Stolz, Einführung in die Vielelektronentheorie der Kristalle (Akademie, Berlin, 1974)

    Google Scholar 

  8. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)

    Article  ADS  Google Scholar 

  9. R.W. Godby, M. Schlüter, L.J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988)

    Article  ADS  Google Scholar 

  10. G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod Phys. 74, 601–659 (2002)

    Article  ADS  Google Scholar 

  11. J. Hubbard, Electron correlations in narrow energy bands. Proc. Roy. Soc. London A 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  12. N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Saunders College, Philadelphia, 1976)

    Google Scholar 

  13. L.D. Landau, The theory of a Fermi liquid. Zh. Eksp. Teor. Fiz. 30, 1058–1064 (1956), [Soviet Phys. JETP (English Transl.) 3, 920–925 (1956)]

    Google Scholar 

  14. L.D. Landau, Oscillations in a Fermi liquid. Zh. Eksp. Teor. Fiz. 32, 59–66 (1957), [Soviet Phys. JETP (English Transl.) 5, 101–108 (1957)]

    Google Scholar 

  15. E.L. Shirley, Self-consistent \(GW\) and higher-order calculations of electron states in metals. Phys. Rev. B 54, 7758–7764 (1996)

    Article  ADS  Google Scholar 

  16. U. von Barth, B. Holm, Self-consistent \(GW_0\) results for the electron gas: fixed screened potential \(W_0\) within the random-phase. Phys. Rev. B 54, 8411–8419 (1996)

    Article  ADS  Google Scholar 

  17. C. Blomberg, B. Bergersen, Spurious structure from approximations to the Dyson equation. Canadian J. Phys. 50, 2286–2293 (1972)

    Article  ADS  Google Scholar 

  18. B. Bergersen, F.W. Kus, C. Blomberg, Single-particle Green’s function in the electron-plasmon approximation. Canadian J. Phys. 51, 102–110 (1973)

    Article  ADS  Google Scholar 

  19. R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (Dover Publ. Inc, New York, 1992)

    Google Scholar 

  20. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Molecular electronic excitations calculated from a solid-state approach. Phys. Rev. B 72, 245425 (2005)

    Google Scholar 

  21. R. Zimmermann, H. Stolz, The mass action law in two-component fermi systems revisited excitons and electron-hole pairs. Phys. Status Solidi B 131, 151–164 (1985)

    Article  ADS  Google Scholar 

  22. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

    Article  ADS  Google Scholar 

  23. O. Pulci, F. Bechstedt, G. Onida, R. Del Sole, L. Reining, State mixing for quasiparticles at surfaces: nonperturbative GW approximation. Phys. Rev. B 60, 16758–16761 (1999)

    Article  ADS  Google Scholar 

  24. http://cms.mpi.univie.ac.at/vasp/

  25. M. Shishkin, G. Kresse, Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007)

    Article  ADS  Google Scholar 

  26. F. Fuchs, Ab-initio-Methoden zur Berechnung der elektronischen Anregungseigenschaften von Halbleitern und Isolatoren unter Berücksichtigung von Vielteilcheneffekten. Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008)

    Google Scholar 

  27. F. Bruneval, N. Vast, L. Reining, Effect of self-consistency on quasiparticles in solids. Phys. Rev. B 74, 045102 (2006)

    Article  ADS  Google Scholar 

  28. W.G. Aulbur, L. Jönsson, J.W. Wilkins, Quasiparticle calculations in solids, in Solid State Physics. Advances in Research and Applications, vol. 54, ed. by H. Ehrenreich, F. Spaepen (Academic Press, San Diego, 2000), pp. 1–218

    Google Scholar 

  29. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics. Green’s Function Methods in Equilibrium and Nonequilibrium Problems (W.A. Benjamin Inc, New York, 1962)

    MATH  Google Scholar 

  30. S. Gradstein, I.M. Ryshik, Tables of Series, Products, and Integrals (Harri Deutsch, Frankfurt, 1981)

    Google Scholar 

  31. M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas, R.W. Godby, The GW space-time method for the self-energy of large systems. Comput. Phys. Commun. 117, 211–228 (1999)

    Article  ADS  MATH  Google Scholar 

  32. F. Aryasetiawan, The GW approximation and vertex corrections, in Strong Coulomb Correlations in Electronic Structure Calculations. Beyond the Local Density Approximation, ed. by V.I. Anisimov (Gordon and Breach Science Publishers, Amsterdam. 2000), pp. 1–95

    Google Scholar 

  33. F. Gygi, A. Baldereschi, Self-consistent Hartree-Fock and screened-exchange calculations in solids: application to silicon. Phys. Rev. B 34, 4405–4408 (1986)

    Article  ADS  Google Scholar 

  34. B. Wenzien, G. Cappellini, F. Bechstedt, Efficient quasiparticle band-structure calculations for cubic and noncubic crystals. Phys. Rev. B 51, 14701–14704 (1995)

    Article  ADS  Google Scholar 

  35. J. Furthmüller, G. Cappellini, H.-Ch. Weissker, F. Bechstedt, GW self-energy calculations for systems with huge supercells. Phys. Rev. B 66, 045110 (2002)

    Google Scholar 

  36. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287 (1921)

    Article  Google Scholar 

  37. J.E. Ortega, F.J. Himpsel, Inverse-photoemission study of Ge(100), Si(100), and GaAs(100): bulk bands and surface states. Phys. Rev. B 47, 2130–2137 (1993)

    Article  ADS  Google Scholar 

  38. A.L. Wachs, T. Miller, T.C. Hsieh, A.P. Shapiro, T.-C. Chiang, Angle-resolved photoemission studies of Ge(111)-c(2\(\times \)8), Ge(111)-(1\(\times \)1)H, Si(111)-(7\(\times \)7), and Si(100)-(2\(\times \)1). Phys. Rev. B 32, 2326–2333 (1985) (as presented in [8])

    Google Scholar 

  39. F.J. Himpsel, P. Heimann, D.E. Eastmann, Surface states on Si(111)-(2\(\times \)1). Phys. Rev. B 24, 2003–2008 (1981)

    Article  ADS  Google Scholar 

  40. D.H. Rich, T. Miller, G.E. Franklin, T.C. Chiang, Sb-induced bulk band transitions in Si(111) and Si(001) observed in synchrotron photoemission studies. Phys. Rev. B 39, 1438–1441 (1989)

    Article  ADS  Google Scholar 

  41. D. Straub, L. Ley, F.J. Himpsel, Inverse-photoemission study of unoccupied electronic states in Ge and Si: bulk energy bands. Phys. Rev. B 33, 2607–2614 (1986)

    Article  ADS  Google Scholar 

  42. M. Shishkin, G. Kresse, Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74, 035101 (2006)

    Article  ADS  Google Scholar 

  43. http://cms.mpi.univie.ac.at/wiki/index.php/GW-recipes

  44. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  45. W. Ku, A.G. Eguiluz, Band-gap problem in semiconductors revisited: Effects of core states and many-body self-consistency. Phys. Rev. Lett. 89, 126401 (2002)

    Article  ADS  Google Scholar 

  46. S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, All-electron exact exchange treatment of semiconductors: effect of core-valence interaction on band-gap and \(d\)-band position. Phys. Rev. Lett. 95, 136402 (2005)

    Article  ADS  Google Scholar 

  47. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, G. Kresse, Quasiparticle band structure based on generalized Kohn-Sham scheme. Phys. Rev. B 76, 115109 (2007)

    Article  ADS  Google Scholar 

  48. M. Marsman, J. Paier, A. Stroppa, G. Kresse, Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 20, 064201 (2008)

    Article  ADS  Google Scholar 

  49. F. Bechstedt, J. Furthmüller, Do we know the fundamental energy gap of InN?. J. Crystal Growth 246, 315–319 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Bechstedt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechstedt, F. (2015). Self-energy. In: Many-Body Approach to Electronic Excitations. Springer Series in Solid-State Sciences, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44593-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44593-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44592-1

  • Online ISBN: 978-3-662-44593-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics