Skip to main content

A Nearly Optimal Upper Bound for the Self-Stabilization Time in Herman’s Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Abstract

Self-stabilization algorithms are very important in designing fault-tolerant distributed systems. In this paper we consider Herman’s self-stabilization algorithm and study its expected self-stabilization time. McIver and Morgan have conjectured the optimal upper bound being 0.148N 2, where N denotes the number of processors. We present an elementary proof showing a bound of 0.167N 2, a sharp improvement compared with the best known bound 0.521N 2. Our proof is inspired by McIver and Morgan’s approach: we find a nearly optimal closed form of the expected stabilization time for any initial configuration, and apply the Lagrange multipliers method to give an upper bound of it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balding, D.: Diffusion-reaction in one dimension. J. Appl. Prob. 25, 733–743 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  3. Dolev, S.: Self-Stabilization. MIT Press (2000)

    Google Scholar 

  4. Feller, W.: An introduction to probability theory and its applications, vol. 1. John Wiley & Sons (1968)

    Google Scholar 

  5. Feng, Y., Zhang, L.: A tighter bound for the self-stabilization time in Herman’s algorithm. Inf. Process. Lett. 113(13), 486–488 (2013)

    Article  MATH  Google Scholar 

  6. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distributed Computing 18(3), 221–232 (2006)

    Article  Google Scholar 

  7. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2), 63–67 (1990), Report at ftp://ftp.math.uiowa.edu/pub/selfstab/H90.html

  8. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Three tokens in Herman’s algorithm. Formal Asp. Comput. 24(4-6), 671–678 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kiefer, S., Murawski, A.S., Ouaknine, J., Worrell, J., Zhang, L.: On Stabilization in Herman’s Algorithm. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 466–477. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4-6), 661–670 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liggett, T.: Interacting particle systems. Springer (2005)

    Google Scholar 

  12. McIver, A., Morgan, C.: An elementary proof that Herman’s ring is Θ(N 2). Inf. Process. Lett. 94(2), 79–84 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nakata, T.: On the expected time for Herman’s probabilistic self-stabilizing algorithm. Theoretical Computer Science 349(3), 475–483 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, Y., Zhang, L. (2014). A Nearly Optimal Upper Bound for the Self-Stabilization Time in Herman’s Algorithm. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics