Solid State Platinum Speciation from X-ray Absorption Spectroscopic Studies of Fresh and Road Aged Three Way and Diesel Vehicle Emission Control Catalysts

  • Timothy I. Hyde
  • Gopinathan SankarEmail author
Part of the Environmental Science and Engineering book series (ESE)


The localised Pt environments present in a variety of unused (fresh) and used (road aged) gasoline Three Way (TWC) and Light and Heavy Duty Diesel vehicle emission catalysts (VEC) from both European and North American origins were determined by platinum L3 and L2 edge X-ray absorption spectroscopy (XAS). Detailed laboratory based characterisation was also utilised to support the XAS studies. It was found that it is not sufficient to use the analysis of X-ray absorption near edge structure (XANES) alone to determine the nature of Pt species present in multi component VEC’s. Detailed analysis of the Extended X-ray Absorption Fine Structure (EXAFS) at the Pt L3 and L2 edges was therefore extensively utilised and revealed the presence of mainly oxidic species in the fresh catalysts while metallic and bimetallic components were found to be the dominant species in the respective road aged catalysts. More importantly, supporting Cl K-edge X-ray absorption spectroscopy confirmed the absence of chlorine associated with platinum. Hence we dismiss the presence of environmentally significant quantities of chloroplatinate species in VEC’s based on weight-of-evidence arguments from chemical analysis, Cl K-edge XANES and analysis of Pt L3 and L2 edge EXAFS data.


Metallic Platinum White Line Intensity Vehicle Emission Control Diesel Vehicle Emission Bimetallic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank all our co-authors in related publications in particular P.W. Ash, D.A. Boyd, J. Keating, J.J Schauer, M.M Shafer, B.M. Toner, G. Randlshofer and K. Rothenbacher. In addition we thank the Analytical Department of the Johnson Matthey Technology Centre, beamline staff of APS 20-BM and B18 of the Diamond Light Source, in particular Dr A. Kroner, Prof A. Dent and Dr G. Cibin for their assistance in setting up the experiments. G.S thanks the Royal Society, London UK for an Industry Fellowship.


  1. Aksenov VL, Koval’chuk MV, Kuz’min AY, Purans Y, Tyutyunnikov SI (2006) Development of methods of EXAFS spectroscopy on synchrotron radiation beams: review. Crystallogr Rep 51(6):908–935. doi: 10.1134/s1063774506060022 CrossRefGoogle Scholar
  2. Aliaga-Alcalde N, George SD, Alfaro-Fuentes I, Cooper GJT, Barba-Behrens N, Bernes S, Reedijk J (2009) Physical characterization and biological studies of a (streptidine) ((PtCl4)-Cl-II) compound. Polyhedron 28(16):3459–3466. doi: 10.1016/j.poly.2009.07.022 CrossRefGoogle Scholar
  3. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B 58(12):7565–7576CrossRefGoogle Scholar
  4. Ankudinov AL, Rehr JJ, Bare SR (2000) Hybridization peaks in Pt-Cl XANES. Chem Phys Lett 316(5–6):495–500CrossRefGoogle Scholar
  5. Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2001) Pt L-edge XANES as a probe of Pt clusters. J Synchrotron Radiat 8:578–580CrossRefGoogle Scholar
  6. Ash PW, Boyd DA, Hyde TI, Keating JL, Randlshofer G, Rothenbacher K, Sankar G, Schauer JJ, Shafer MM, Toner BM (2014) Local structure and speciation of platinum in fresh and road-aged North American sourced vehicle emissions catalysts: an X-ray absorption spectroscopic study. Environ Sci Technol 48(7):3658–3665. doi: 10.1021/es404974e CrossRefGoogle Scholar
  7. Bare SR, Ressler T (2009) Characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 52. Elsevier Academic Press Inc.: San Diego, pp 339–465. doi: 10.1016/s0360-0564(08)00006-0
  8. Burch R, Breen JP, Meunier FC (2002) A review of the selective reduction of NOx, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl Catal B Environ 39(4):283–303CrossRefGoogle Scholar
  9. Catalytic Converters (2014) international platinum group metals association. Accessed 6th June 2014
  10. Chen X, Chu W, Wang L, Wu Z (2009) Geometry of Pt(IV) in H(2)PtCl(6) aqueous solution: An X-ray absorption spectroscopic investigation. J Mol Struct 920(1–3):40–44Google Scholar
  11. Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Jyoti B, Newton MA (2005) In situ monitoring of oxide-supported platinum-group metal catalysts by energy dispersive EXAFS. Phys Scr T115:72–75CrossRefGoogle Scholar
  12. Ezekoye OK, Drews AR, Jen HW, Kudla RJ, McCabe RW, Sharma M, Howe JY, Allard LF, Graham GW, Pan XQ (2011) Characterization of alumina-supported Pt and Pt-Pd NO oxidation catalysts with advanced electron microscopy. J Catal 280(1):125–136CrossRefGoogle Scholar
  13. Feldmann J, Salaun P, Lombi E (2009) Critical review perspective: elemental speciation analysis methods in environmental chemistry—moving towards methodological integration. Environ Chem 6(4):275–289. doi: 10.1071/en09018 CrossRefGoogle Scholar
  14. Fernandez-Garcia M (2002) Xanes analysis of catalytic systems under reaction conditions. Catal Rev Sci Eng 44(1):59–121. doi: 10.1081/cr-120001459 CrossRefGoogle Scholar
  15. Gomez B, Palacios MA, Gomez M, Sanchez JL, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Petterson C, Wass U (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299(1–3):1–19. doi: 10.1016/s0048-9697(02)00038-4 CrossRefGoogle Scholar
  16. Graefe M, Donner E, Collins RN, Lombi E (2014) Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: A critical review. Anal Chim Acta 822:1–22. doi: 10.1016/j.aca.2014.02.044 CrossRefGoogle Scholar
  17. Henderson GS, de Groot FMF, Moulton BJA (2014) X-ray Absorption Near-Edge Structure (XANES) Spectroscopy. In: Henderson GS, Neuville DR, Downs RT (eds) Spectroscopic methods in mineralology and materials sciences. Reviews in mineralogy and geochemistry, vol 78. Mineralogical Society of America, Chantilly, VA, pp 75–138. doi: 10.2138/rmg.2014.78.3
  18. Hyde TI, Ash PW, Boyd DA, Randlshofer G, Rothenbacher K, Sankar G (2011) X-ray absorption spectroscopic studies of platinum speciation in fresh and road aged light-duty diesel vehicle emission control catalysts. Platin Met Rev 55(4):233–245. doi: 10.1595/147106711x598910 CrossRefGoogle Scholar
  19. Kaneeda M, Iizuka H, Hiratsuka T, Shinotsuka N, Arai M (2009) Improvement of thermal stability of NO oxidation Pt/Al(2)O(3) catalyst by addition of Pd. Appl Catal B-Environ 90(3–4):564–569CrossRefGoogle Scholar
  20. Kaspar J, Fornasiero P (2003) Nanostructured materials for advanced automotive de-pollution catalysts. J Solid State Chem 171(1–2):19–29. doi: 10.1016/s0022-4596(02)00141-x CrossRefGoogle Scholar
  21. Kaspar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77(4):419–449. doi: 10.1016/s0920-5861(02)00384-x CrossRefGoogle Scholar
  22. Koningsberger DC, Prins R (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley, New YorkGoogle Scholar
  23. Leggett D (2013) UK: global vehicle sales up 5.2 % to 80.9 m in 2012. Aroq Ltd. Accessed 6 June 2014
  24. Lei Y, Jelic J, Nitsche LC, Meyer R, Miller J (2011) Effect of Particle Size and Adsorbates on the L(3), L(2) and L(1) X-ray absorption near edge structure of supported Pt nanoparticles. Top Catal 54(5–7):334–348CrossRefGoogle Scholar
  25. Levy PJ, Pitchon V, Perrichon V, Primet M, Chevrier M, Gauthier C (1998) Characterisation of model three-way catalysts—II. Infrared study of the surface composition of platinum-rhodium alumina catalysts. J Catal 178(1):363–371CrossRefGoogle Scholar
  26. Li Z, Dervishi E, Saini V, Zheng L, Yan W, Wei S, Xu Y, Biris AS (2010) X-ray absorption fine structure techniques. Part Sci Technol 28(2):95–131. doi: 10.1080/02726350903328944 CrossRefGoogle Scholar
  27. Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Mineral 97(5–6):816–827. doi: 10.2138/am.2012.3903 CrossRefGoogle Scholar
  28. Moldovan M, Gomez MM, Palacios MA (1999) Determination of platinum, rhodium and palladium in car exhaust fumes. J Anal At Spectrom 14(8):1163–1169. doi: 10.1039/a901516g CrossRefGoogle Scholar
  29. Moldovan M, Palacios MA, Gomez MM, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Pettersson C, Wass U, Luna M, Saenz JC, Santamaria J (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296(1–3):199–208. doi: 10.1016/s0048-9697(02)00087-6 CrossRefGoogle Scholar
  30. Moldovan M, Rauch S, Morrison GM, Gomez M, Palacios MA (2003) Impact of ageing on the distribution of platinum group elements and catalyst poisoning elements in automobile catalysts. Surf Interface Anal 35(4):354–359. doi: 10.1002/sia.1541 CrossRefGoogle Scholar
  31. Nagai Y, Dohmae K, Ikeda Y, Takagi N, Tanabe T, Hara N, Guilera G, Pascarelli S, Newton MA, Kuno O, Jiang H, Shinjoh H, Matsumoto Si (2008) In Situ redispersion of platinum autoexhaust catalysts: an on-line approach to increasing catalyst lifetimes? Angew Chem-Int Ed 47 (48):9303-9306Google Scholar
  32. Newton MA, van Beek W (2010) Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev 39(12):4845–4863CrossRefGoogle Scholar
  33. Palacios M, Gomez MM, Moldovan M, Morrison G, Rauch S, McLeod C, Ma R, Laserna J, Lucena P, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Lustig S, Zischka M, Wass U, Stenbom B, Luna M, Saenz JC, Santamaria J (2000) Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Sci Total Environ 257(1):1–15. doi: 10.1016/s0048-9697(00)00464-2 CrossRefGoogle Scholar
  34. Platinum Johnson Matthey PLC (2013). Accessed 6 June 2014
  35. Prichard HM, Fisher PC (2012) Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. Environ Sci Technol 46(6):3149–3154. doi: 10.1021/es203666h CrossRefGoogle Scholar
  36. Rauch S, Hemond HF, Barbante C, Owari M, Morrison GM, Peucker-Ehrenbrink B, Wass U (2005) Importance of automobile exhaust catalyst emissions for the depostion of platinum, palladium, and rhodium in the Northern Hemisphere. Environ Sci Technol 39(21):8156–8162CrossRefGoogle Scholar
  37. Rogemond E, Essayem N, Frety R, Perrichon V, Primet M, Chevrier M, Gauthier C, Mathis F (1999) Characterization of model three-way catalysts—III. Infrared study of the surface composition of platinum-rhodium ceria-alumina catalysts. J Catal 186(2):414–422CrossRefGoogle Scholar
  38. Roy S, Baiker A (2009) NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 109(9):4054–4091. doi: 10.1021/cr800496f CrossRefGoogle Scholar
  39. Rumpf H, Hormes J, Moller A, Meyer G (1999) Thermal decomposition of (NH4)(2) PtCl6—an in situ X-ray absorption spectroscopy study. J Synchrotron Radiat 6:468–470. doi: 10.1107/s0909049598015994 CrossRefGoogle Scholar
  40. Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev 104(10):4613–4635. doi: 10.1021/cr020708r CrossRefGoogle Scholar
  41. Sa J, Abreu Fernandes DL, Aiouache F, Goguet A, Hardacre C, Lundie D, Naeem W, Partridge WP, Stere C (2010) SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths. Analyst 135(9):2260–2272Google Scholar
  42. Sen IS (2013) Platinum group element pollution is a growing concern in countries with developing economy. Environ Sci Technol 47(24):13903–13904CrossRefGoogle Scholar
  43. Thomas JM, Sankar G (2001a) The role of synchrotron-based studies in the elucidation and design of active sites in titanium-silica epoxidation catalysts. Acc Chem Res 34(7):571–581. doi: 10.1021/ar010003w CrossRefGoogle Scholar
  44. Thomas JM, Sankar G (2001b) The role of XAFS in the in situ and ex situ elucidation of active sites in designed solid catalysts. J Synchrotron Radiat 8:55–60CrossRefGoogle Scholar
  45. Twigg MV (2006) Roles of catalytic oxidation in control of vehicle exhaust emissions. Catal Today 117(4):407–418CrossRefGoogle Scholar
  46. Twigg MV (2011a) Catalytic control of emissions from cars. Catal Today 163(1):33–41CrossRefGoogle Scholar
  47. Twigg MV (2011b) Haren Gandhi 1941–2010: contributions to the development and implementation of catalytic emissions control systems. Platin Met Rev 55(1):43–53. doi: 10.1595/147106711x540652 CrossRefGoogle Scholar
  48. Twigg MV, Phillips PR (2009) Cleaning the air we breathe—controlling diesel particulate emissions from passenger cars. Platin Met Rev 53(1):27–34. doi: 10.1595/147106709x390977 CrossRefGoogle Scholar
  49. Working in Partnership for Cleaner Air (2014) Association for emissions control by catalysts. Accessed 6 June 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Johnson Matthey Technology CentreReadingUK
  2. 2.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations