Skip to main content

Combining Micromanipulation, Kerr Magnetometry and Magnetic Force Microscopy for Characterization of Three-Dimensional Magnetic Nanostructures

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

In order to characterize the magnetic properties of magnetic suspended nanostructures, we show here a methodology which combines micromanipulation, Kerr magnetometry, and magnetic force microscopy. By following this procedure, we directly measure the magnetization switching of suspended nanowires, we determine the mechanism for magnetization reversal of the wires, and we image their magnetic domain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernández-Pacheco A (2011) Studies of nanoconstrictions, nanowires and Fe3O4 thin films, springer theses. Springer, Berlin

    Book  Google Scholar 

  2. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190

    Article  CAS  Google Scholar 

  3. Klāui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20:313001

    Article  Google Scholar 

  4. Cowburn RP, Petit D (2005) Spintronics: turbulence ahead. Nat Mater 4:721

    Article  CAS  Google Scholar 

  5. Ono T, Miyajima H, Shigeto K, Kibu M, Hosoito N, Shinjo T (1999) Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284:468

    Article  CAS  Google Scholar 

  6. Hayashi M, Thomas L, Moriya R, Rettner C, Parkin SSP (2008) Current-controlled magnetic domain-wall nanowire shift register. Science 320:209

    Article  CAS  Google Scholar 

  7. O’Brien L, Read DE, Zeng HT, Lewis ER, Petit D, Cowburn RP (2009) Bidirectional magnetic nanowire shift register. Appl Phys Lett 95:232502

    Article  Google Scholar 

  8. Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa T, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2010) Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl Phys Express 3:073004

    Article  Google Scholar 

  9. Kim K-J, Lee J-C, Yun S-J, Gim G-H, Lee K-S, Choe S-B, Shin K-H (2010) Electric control of multiple domain walls in Pt/Co/Pt nanotracks with perpendicular magnetic anisotropy. Appl Phys Express 3:083001

    Article  Google Scholar 

  10. Franken JH, Swagten HJM, Koopmans B (2013) Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat Nanotechnol 7:499

    Article  Google Scholar 

  11. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688

    Article  CAS  Google Scholar 

  12. Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J-V, Zhao W, Trypiniotis T, Cowburn RP, Chappert C, Ravelosona D, Lecoeur P (2012) Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat Commun 4:1378

    Article  Google Scholar 

  13. Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338

    Article  CAS  Google Scholar 

  14. Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405

    Article  Google Scholar 

  15. Bachmann J, Jing J, Knez M, Barth S, Shen H, Mathur S, Gosele U, Nielsch K (2007) Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc 129:9554

    Article  CAS  Google Scholar 

  16. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749

    Article  CAS  Google Scholar 

  17. Utke I, Hofmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vacuum Sci Technol B 26:1197

    Article  CAS  Google Scholar 

  18. van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. Appl Phys Rev 104:081301

    Article  Google Scholar 

  19. Koops HW (2003) Rapid prototyping and structure generation using three dimensional nanolithography with electron beam induced chemical reactions. Proc SPIE 5116:393

    Article  CAS  Google Scholar 

  20. Gabuerac M, Bernau L, Utke I, De Teresa JM, Fernández-Pacheco A (2011) Focused ion and electron beam induced deposition of magnetic structures. In: Russell PE, Utke I, Moshkalev S (eds) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  21. Fernández-Pacheco A, Córdoba R, Serrano-Ramón LE, Ibarra MR, De Teresa JM (2013) Direct patterning of cobalt nanostructures using focused electron beam-induced deposition. In: Kobayashi Y, Suzuki H (eds) Cobalt: occurrence, uses and properties. Nova Publishers, New York

    Google Scholar 

  22. Fernández-Pacheco A, Córdoba R, Ibarra MR, De Teresa JM (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42:055005

    Article  Google Scholar 

  23. Serrano-Ramón LE, Córdoba R, Rodríguez LA, Magen C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5:7781

    Article  Google Scholar 

  24. Alwood DA, Xiong G, Cooke MD, Cowburn RP (2003) Magneto-optical Kerr effect analysis of magnetic nanostructures. J Phys D Appl Phys 36:2175

    Article  Google Scholar 

  25. Henry Y, Ounadjela K, Piraux L, Dubois S, George J-M, Duvail J-L (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Euro Phys J B 20:35

    Article  CAS  Google Scholar 

  26. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177

    Article  CAS  Google Scholar 

  27. Schindler M, Nur-E-Kamal A, Ahmed I, Kamal J, Liu HY, Amor N, Ponery AS, Crockett DP, Grafe TH, Chung HY, Weik T, Jones E, Meiners S (2006) Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 45:215

    Article  CAS  Google Scholar 

  28. Ferry DK (2008) Nanowires in nanoelectronics. Science 319:579

    Article  CAS  Google Scholar 

  29. Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94:192509

    Article  Google Scholar 

  30. Wieser R, Nowak U, Usadel KD (2004) Domain wall mobility in nanowires: transverse versus vortex walls. Phys Rev B 69:064401

    Article  Google Scholar 

  31. Yan M, Kakay A, Gliga S, Hertel R (2010) Beating the walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett 104:057201

    Article  Google Scholar 

  32. Fernández-Pacheco A, Serrano-Ramón LE, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee JH, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492

    Article  Google Scholar 

  33. Gazzadi GC, Frabboni S, Menozzi C (2007) Suspended nanostructures grown by electron beam-induced deposition of Pt and TEOS precursors. Nanotechnology 18:445709

    Article  Google Scholar 

  34. Utke I, Hofmann P, Berger R, Scandella L (2002) High-resolution magnetic Co supertips grown by a focused electron beam. Appl Phys Lett 80:4792

    Article  CAS  Google Scholar 

  35. Utke I, Michler J, Gasser PH, Santschi C, Laub D, Cantoni M, Buffat PA, Jiao C, Hoffmann P (2005) Cross-section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition. Adv Eng Mater 7:323–331

    Article  CAS  Google Scholar 

  36. Qiu ZQ, Bader SD (1999) Surface magneto-optic Kerr effect (SMOKE). J Magn Magn Mater 200:664

    Article  CAS  Google Scholar 

  37. Hamrle J, Ferre J, Nyvlt M, Visnovsky S (2002) In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers. In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers. Phys Rev B 66:224423

    Article  Google Scholar 

  38. Perna P, Rodrigo C, Muñoz M, Prieto JL, Bollero A, Maccariello D, Cuñado JLF, Romera M, Akerman J, Jiménez E, Mikuszeit N, Cros V, Camarero J, Miranda R (2012) Magnetization reversal signatures in the magnetoresistance of magnetic multilayers. Phys Rev B 86:024421

    Article  Google Scholar 

  39. Zeng HT, Read DE, Petit D, Jausovec AV, O’Brien L, Lewis ER, Cowburn RP (2009) Combined electrical and magneto-optical measurements of the magnetization reversal process at a domain wall trap. Appl Phys Lett 94:103113

    Article  Google Scholar 

  40. Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71:064411

    Article  Google Scholar 

  41. Brands M, Dumpich G (2005) Experimental determination of anisotropy and demagnetizing factors of single Co nanowires by magnetoresistance measurements. J Appl Phys 98:014309

    Article  Google Scholar 

  42. Muñoz M, Prieto JL (2011) Suppression of the intrinsic stochastic pinning of domain walls in magnetic nanostripes. Nature. Communications 2:562

    Google Scholar 

  43. Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C (2007) Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2FeSi Heusler compound. J Phys D Appl Phys 40:1563

    Article  CAS  Google Scholar 

  44. Buchmeier M, Schreiber R, Bürgler DE, Schneider CM (2009) Thickness dependence of linear and quadratic magneto-optical Kerr effects in ultrathin Fe(001) films. Phys Rev B 79:064402

    Article  Google Scholar 

  45. Langford RM, Wang T-X, Thornton M, Heidelberg A, Sheridan JG, Blau W, Leahy R (2006) Comparison of different methods to contact to nanowires. J Vac Sci Technol B 24:2306

    Article  CAS  Google Scholar 

  46. Eichfeld CM, Gerstl SSA, Prosa T, Ke Y, Suzanne RJM, Mohney A (2012) Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst. Nanotechnology 23:215205

    Article  Google Scholar 

  47. Zhang YL, Li J, To S, Zhang Y, Ye X, You L, Sun Y (2012) Automated nanomanipulation for nanodevice construction. Nanotechnology 23:065304

    Article  Google Scholar 

  48. Mølhave K, Wich T, Kortschack A, Bøggild P (2006) Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17:2434

    Article  Google Scholar 

  49. Cagliani A, Wierzbicki R, Occhipinti L, Petersen DH, Dyvelkov KN, Sukas OS, Herstrøm BG, Booth T, Bøggild P (2010) Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J Micromech Microeng 20:035009

    Article  Google Scholar 

  50. Hao L, Cox D, See P, Gallop J, Kazakova O (2010) Magnetic nanoparticle detection using nano-SQUID sensors. J Phys D Appl Phys 43:474004

    Article  Google Scholar 

  51. Di Michele L, Shelly C, de Marco P, See P, Cox D, Kazakova O (2011) Detection and susceptibility measurements of a single Dynal bead. J Appl Phys 110:063916

    Article  Google Scholar 

  52. Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D (2012) Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8:1465

    Article  CAS  Google Scholar 

  53. Romano-Rodríguez A, Hernández-Ramirez F (2007) Dual-beam focused ion beam (FIB): a prototyping tool for micro and nanofabrication. Microelectron Eng 84:789

    Article  Google Scholar 

  54. Wernsdorfer W, Doudin B, Mailly D, Hasselbach K, Benoit A, Meier J, Ansermet J-P, Barbara B (1999) Nucleation of magnetization reversal in individual nanosized nickel wires. Phys Rev Lett 77:1873

    Article  Google Scholar 

  55. Kläui M, Vaz CAF, Bland JAC, Heyderman LJ, Nolting F, Pavlovska A, Bauer E, Cherifi S, Heun S, Locatelli A (2004) Head-to-head domain-wall phase diagram in mesoscopic ring magnets. Appl Phys Lett 85:5637

    Article  Google Scholar 

  56. Shigeto K, Shinjo T, Ono T (1999) Injection of a magnetic domain wall into a submicron magnetic wire. Appl Phys Lett 75:2815

    Article  CAS  Google Scholar 

  57. Utke I, Bret T, Laub D, Buffat P, Scandella L, Hoffmann P (2004) Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron Eng 73:553

    Article  Google Scholar 

  58. Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691

    Article  CAS  Google Scholar 

  59. Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Magnetization reversal in individual cobalt micro and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20:475704

    Article  Google Scholar 

  60. Lewis ER, Petit D, Thevenard L, Jausovec AV, O’Brien L, Read DE, Cowburn RP (2009) Magnetic domain wall pinning by a curved conduit. Appl Phys Lett 95:152505

    Article  Google Scholar 

  61. Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JC, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13:2053

    Article  CAS  Google Scholar 

  62. Fruchart O (2013) 58th Annual magnetism and magnetic materials (MMM) conference, Denver

    Google Scholar 

Download references

Acknowledgments

This research was supported by an Intra-European Marie Curie Fellowship project No. 251698: 3DMAGNANOW and an ERC Advanced Grant project No. 247368: 3SPIN, both funded by the 7th European Community Framework Programme, by the MAT2011-27553-C02 project funded by the Spanish Ministry of Economy (including FEDER funding), and by the I-LINK0026 project funded by the Spanish CSIC. We would like to thank our collaborators L. O’Brien, D. Petit, J. Lee, R. Mansell, J. M. Michalik, R. Cordoba, and L. Casado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalio Fernández-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández-Pacheco, A., Cowburn, R.P., Serrano-Ramón, L.E., Ibarra, M.R., De Teresa, J.M. (2015). Combining Micromanipulation, Kerr Magnetometry and Magnetic Force Microscopy for Characterization of Three-Dimensional Magnetic Nanostructures. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_14

Download citation

Publish with us

Policies and ethics