Advertisement

Combining Micromanipulation, Kerr Magnetometry and Magnetic Force Microscopy for Characterization of Three-Dimensional Magnetic Nanostructures

  • Amalio Fernández-Pacheco
  • Russell P. Cowburn
  • Luis E. Serrano-Ramón
  • M. Ricardo Ibarra
  • José M. De Teresa

Abstract

In order to characterize the magnetic properties of magnetic suspended nanostructures, we show here a methodology which combines micromanipulation, Kerr magnetometry, and magnetic force microscopy. By following this procedure, we directly measure the magnetization switching of suspended nanowires, we determine the mechanism for magnetization reversal of the wires, and we image their magnetic domain structure.

Keywords

Magneto-optical Kerr effect Magnetic Force Microscopy Nanowires Spintronics Domain walls Nanoelectronics Three-dimensional devices 

Notes

Acknowledgments

This research was supported by an Intra-European Marie Curie Fellowship project No. 251698: 3DMAGNANOW and an ERC Advanced Grant project No. 247368: 3SPIN, both funded by the 7th European Community Framework Programme, by the MAT2011-27553-C02 project funded by the Spanish Ministry of Economy (including FEDER funding), and by the I-LINK0026 project funded by the Spanish CSIC. We would like to thank our collaborators L. O’Brien, D. Petit, J. Lee, R. Mansell, J. M. Michalik, R. Cordoba, and L. Casado.

References

  1. 1.
    Fernández-Pacheco A (2011) Studies of nanoconstrictions, nanowires and Fe3O4 thin films, springer theses. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190CrossRefGoogle Scholar
  3. 3.
    Klāui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20:313001CrossRefGoogle Scholar
  4. 4.
    Cowburn RP, Petit D (2005) Spintronics: turbulence ahead. Nat Mater 4:721CrossRefGoogle Scholar
  5. 5.
    Ono T, Miyajima H, Shigeto K, Kibu M, Hosoito N, Shinjo T (1999) Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284:468CrossRefGoogle Scholar
  6. 6.
    Hayashi M, Thomas L, Moriya R, Rettner C, Parkin SSP (2008) Current-controlled magnetic domain-wall nanowire shift register. Science 320:209CrossRefGoogle Scholar
  7. 7.
    O’Brien L, Read DE, Zeng HT, Lewis ER, Petit D, Cowburn RP (2009) Bidirectional magnetic nanowire shift register. Appl Phys Lett 95:232502CrossRefGoogle Scholar
  8. 8.
    Chiba D, Yamada G, Koyama T, Ueda K, Tanigawa T, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2010) Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl Phys Express 3:073004CrossRefGoogle Scholar
  9. 9.
    Kim K-J, Lee J-C, Yun S-J, Gim G-H, Lee K-S, Choe S-B, Shin K-H (2010) Electric control of multiple domain walls in Pt/Co/Pt nanotracks with perpendicular magnetic anisotropy. Appl Phys Express 3:083001CrossRefGoogle Scholar
  10. 10.
    Franken JH, Swagten HJM, Koopmans B (2013) Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat Nanotechnol 7:499CrossRefGoogle Scholar
  11. 11.
    Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688CrossRefGoogle Scholar
  12. 12.
    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J-V, Zhao W, Trypiniotis T, Cowburn RP, Chappert C, Ravelosona D, Lecoeur P (2012) Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat Commun 4:1378CrossRefGoogle Scholar
  13. 13.
    Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338CrossRefGoogle Scholar
  14. 14.
    Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405CrossRefGoogle Scholar
  15. 15.
    Bachmann J, Jing J, Knez M, Barth S, Shen H, Mathur S, Gosele U, Nielsch K (2007) Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc 129:9554CrossRefGoogle Scholar
  16. 16.
    Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749CrossRefGoogle Scholar
  17. 17.
    Utke I, Hofmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vacuum Sci Technol B 26:1197CrossRefGoogle Scholar
  18. 18.
    van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. Appl Phys Rev 104:081301CrossRefGoogle Scholar
  19. 19.
    Koops HW (2003) Rapid prototyping and structure generation using three dimensional nanolithography with electron beam induced chemical reactions. Proc SPIE 5116:393CrossRefGoogle Scholar
  20. 20.
    Gabuerac M, Bernau L, Utke I, De Teresa JM, Fernández-Pacheco A (2011) Focused ion and electron beam induced deposition of magnetic structures. In: Russell PE, Utke I, Moshkalev S (eds) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Fernández-Pacheco A, Córdoba R, Serrano-Ramón LE, Ibarra MR, De Teresa JM (2013) Direct patterning of cobalt nanostructures using focused electron beam-induced deposition. In: Kobayashi Y, Suzuki H (eds) Cobalt: occurrence, uses and properties. Nova Publishers, New YorkGoogle Scholar
  22. 22.
    Fernández-Pacheco A, Córdoba R, Ibarra MR, De Teresa JM (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42:055005CrossRefGoogle Scholar
  23. 23.
    Serrano-Ramón LE, Córdoba R, Rodríguez LA, Magen C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5:7781CrossRefGoogle Scholar
  24. 24.
    Alwood DA, Xiong G, Cooke MD, Cowburn RP (2003) Magneto-optical Kerr effect analysis of magnetic nanostructures. J Phys D Appl Phys 36:2175CrossRefGoogle Scholar
  25. 25.
    Henry Y, Ounadjela K, Piraux L, Dubois S, George J-M, Duvail J-L (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Euro Phys J B 20:35CrossRefGoogle Scholar
  26. 26.
    Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177CrossRefGoogle Scholar
  27. 27.
    Schindler M, Nur-E-Kamal A, Ahmed I, Kamal J, Liu HY, Amor N, Ponery AS, Crockett DP, Grafe TH, Chung HY, Weik T, Jones E, Meiners S (2006) Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 45:215CrossRefGoogle Scholar
  28. 28.
    Ferry DK (2008) Nanowires in nanoelectronics. Science 319:579CrossRefGoogle Scholar
  29. 29.
    Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94:192509CrossRefGoogle Scholar
  30. 30.
    Wieser R, Nowak U, Usadel KD (2004) Domain wall mobility in nanowires: transverse versus vortex walls. Phys Rev B 69:064401CrossRefGoogle Scholar
  31. 31.
    Yan M, Kakay A, Gliga S, Hertel R (2010) Beating the walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett 104:057201CrossRefGoogle Scholar
  32. 32.
    Fernández-Pacheco A, Serrano-Ramón LE, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee JH, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492CrossRefGoogle Scholar
  33. 33.
    Gazzadi GC, Frabboni S, Menozzi C (2007) Suspended nanostructures grown by electron beam-induced deposition of Pt and TEOS precursors. Nanotechnology 18:445709CrossRefGoogle Scholar
  34. 34.
    Utke I, Hofmann P, Berger R, Scandella L (2002) High-resolution magnetic Co supertips grown by a focused electron beam. Appl Phys Lett 80:4792CrossRefGoogle Scholar
  35. 35.
    Utke I, Michler J, Gasser PH, Santschi C, Laub D, Cantoni M, Buffat PA, Jiao C, Hoffmann P (2005) Cross-section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition. Adv Eng Mater 7:323–331CrossRefGoogle Scholar
  36. 36.
    Qiu ZQ, Bader SD (1999) Surface magneto-optic Kerr effect (SMOKE). J Magn Magn Mater 200:664CrossRefGoogle Scholar
  37. 37.
    Hamrle J, Ferre J, Nyvlt M, Visnovsky S (2002) In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers. In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers. Phys Rev B 66:224423CrossRefGoogle Scholar
  38. 38.
    Perna P, Rodrigo C, Muñoz M, Prieto JL, Bollero A, Maccariello D, Cuñado JLF, Romera M, Akerman J, Jiménez E, Mikuszeit N, Cros V, Camarero J, Miranda R (2012) Magnetization reversal signatures in the magnetoresistance of magnetic multilayers. Phys Rev B 86:024421CrossRefGoogle Scholar
  39. 39.
    Zeng HT, Read DE, Petit D, Jausovec AV, O’Brien L, Lewis ER, Cowburn RP (2009) Combined electrical and magneto-optical measurements of the magnetization reversal process at a domain wall trap. Appl Phys Lett 94:103113CrossRefGoogle Scholar
  40. 40.
    Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71:064411CrossRefGoogle Scholar
  41. 41.
    Brands M, Dumpich G (2005) Experimental determination of anisotropy and demagnetizing factors of single Co nanowires by magnetoresistance measurements. J Appl Phys 98:014309CrossRefGoogle Scholar
  42. 42.
    Muñoz M, Prieto JL (2011) Suppression of the intrinsic stochastic pinning of domain walls in magnetic nanostripes. Nature. Communications 2:562Google Scholar
  43. 43.
    Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C (2007) Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2FeSi Heusler compound. J Phys D Appl Phys 40:1563CrossRefGoogle Scholar
  44. 44.
    Buchmeier M, Schreiber R, Bürgler DE, Schneider CM (2009) Thickness dependence of linear and quadratic magneto-optical Kerr effects in ultrathin Fe(001) films. Phys Rev B 79:064402CrossRefGoogle Scholar
  45. 45.
    Langford RM, Wang T-X, Thornton M, Heidelberg A, Sheridan JG, Blau W, Leahy R (2006) Comparison of different methods to contact to nanowires. J Vac Sci Technol B 24:2306CrossRefGoogle Scholar
  46. 46.
    Eichfeld CM, Gerstl SSA, Prosa T, Ke Y, Suzanne RJM, Mohney A (2012) Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst. Nanotechnology 23:215205CrossRefGoogle Scholar
  47. 47.
    Zhang YL, Li J, To S, Zhang Y, Ye X, You L, Sun Y (2012) Automated nanomanipulation for nanodevice construction. Nanotechnology 23:065304CrossRefGoogle Scholar
  48. 48.
    Mølhave K, Wich T, Kortschack A, Bøggild P (2006) Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17:2434CrossRefGoogle Scholar
  49. 49.
    Cagliani A, Wierzbicki R, Occhipinti L, Petersen DH, Dyvelkov KN, Sukas OS, Herstrøm BG, Booth T, Bøggild P (2010) Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J Micromech Microeng 20:035009CrossRefGoogle Scholar
  50. 50.
    Hao L, Cox D, See P, Gallop J, Kazakova O (2010) Magnetic nanoparticle detection using nano-SQUID sensors. J Phys D Appl Phys 43:474004CrossRefGoogle Scholar
  51. 51.
    Di Michele L, Shelly C, de Marco P, See P, Cox D, Kazakova O (2011) Detection and susceptibility measurements of a single Dynal bead. J Appl Phys 110:063916CrossRefGoogle Scholar
  52. 52.
    Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D (2012) Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8:1465CrossRefGoogle Scholar
  53. 53.
    Romano-Rodríguez A, Hernández-Ramirez F (2007) Dual-beam focused ion beam (FIB): a prototyping tool for micro and nanofabrication. Microelectron Eng 84:789CrossRefGoogle Scholar
  54. 54.
    Wernsdorfer W, Doudin B, Mailly D, Hasselbach K, Benoit A, Meier J, Ansermet J-P, Barbara B (1999) Nucleation of magnetization reversal in individual nanosized nickel wires. Phys Rev Lett 77:1873CrossRefGoogle Scholar
  55. 55.
    Kläui M, Vaz CAF, Bland JAC, Heyderman LJ, Nolting F, Pavlovska A, Bauer E, Cherifi S, Heun S, Locatelli A (2004) Head-to-head domain-wall phase diagram in mesoscopic ring magnets. Appl Phys Lett 85:5637CrossRefGoogle Scholar
  56. 56.
    Shigeto K, Shinjo T, Ono T (1999) Injection of a magnetic domain wall into a submicron magnetic wire. Appl Phys Lett 75:2815CrossRefGoogle Scholar
  57. 57.
    Utke I, Bret T, Laub D, Buffat P, Scandella L, Hoffmann P (2004) Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron Eng 73:553CrossRefGoogle Scholar
  58. 58.
    Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691CrossRefGoogle Scholar
  59. 59.
    Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Magnetization reversal in individual cobalt micro and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20:475704CrossRefGoogle Scholar
  60. 60.
    Lewis ER, Petit D, Thevenard L, Jausovec AV, O’Brien L, Read DE, Cowburn RP (2009) Magnetic domain wall pinning by a curved conduit. Appl Phys Lett 95:152505CrossRefGoogle Scholar
  61. 61.
    Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JC, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13:2053CrossRefGoogle Scholar
  62. 62.
    Fruchart O (2013) 58th Annual magnetism and magnetic materials (MMM) conference, DenverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Amalio Fernández-Pacheco
    • 1
  • Russell P. Cowburn
    • 1
  • Luis E. Serrano-Ramón
    • 2
  • M. Ricardo Ibarra
    • 4
    • 3
  • José M. De Teresa
    • 2
    • 3
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Física de la Materia CondensadaUniversidad de Zaragoza–CSICZaragozaSpain
  3. 3.Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain
  4. 4.Departamento de Física de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations