Skip to main content
Book cover

Placebo pp 37–69Cite as

A Meta-analysis of Brain Mechanisms of Placebo Analgesia: Consistent Findings and Unanswered Questions

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 225))

Abstract

Placebo treatments reliably reduce pain in the clinic and in the lab. Because pain is a subjective experience, it has been difficult to determine whether placebo analgesia is clinically relevant. Neuroimaging studies of placebo analgesia provide objective evidence of placebo-induced changes in brain processing and allow researchers to isolate the mechanisms underlying placebo-based pain reduction. We conducted formal meta-analyses of 25 neuroimaging studies of placebo analgesia and expectancy-based pain modulation. Results revealed that placebo effects and expectations for reduced pain elicit reliable reductions in activation during noxious stimulation in regions often associated with pain processing, including the dorsal anterior cingulate, thalamus, and insula. In addition, we observed consistent reductions during painful stimulation in the amygdala and striatum, regions implicated widely in studies of affect and valuation. This suggests that placebo effects are strongest on brain regions traditionally associated with not only pain, but also emotion and value more generally. Other brain regions showed reliable increases in activation with expectations for reduced pain. These included the prefrontal cortex (including dorsolateral, ventromedial, and orbitofrontal cortices), the midbrain surrounding the periaqueductal gray, and the rostral anterior cingulate. We discuss implications of these findings as well as how future studies can expand our understanding of the precise functional contributions of the brain systems identified here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F (2011) Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum Brain Mapp 34:738–752

    PubMed  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain (Lond) 9:463–484

    Google Scholar 

  • Atlas LY, Wager TD (2012) How expectations shape pain. Neurosci Lett 520:140–148

    PubMed  CAS  Google Scholar 

  • Atlas LY, Wager TD (2013) Expectancies and beliefs: insights from cognitive neuroscience. In: Ochsner KN, Kosslyn SM (eds) Oxford handbook of cognitive neuroscience. Oxford University Press, Oxford, NY, pp 359–381

    Google Scholar 

  • Atlas LY, Bolger N, Lindquist MA, Wager TD (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30:12964–12977

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD (2012) Dissociable influences of opiates and expectations on pain. J Neurosci 32:8053–8064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atlas LY, Wielgosz J, Whittington RA, Wager TD (2014) Specifying the non-specific factors underlying opioid analgesia: expectancy, attention, and affect. Psychopharmacology 231:813–823

    PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV (2009) Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol 101:875–887

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barrett B, Muller D, Rakel D, Rabago D, Marchand L, Scheder JC (2006) Placebo, meaning, and health. Perspect Biol Med 49:178–198

    PubMed  Google Scholar 

  • Baumgartner U, Iannetti GD, Zambreanu L, Stoeter P, Treede R-D, Tracey I (2010) Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 104:2863–2872

    PubMed  PubMed Central  Google Scholar 

  • Beecher HK (1955) The powerful placebo. J Am Med Assoc 159:1602–1606

    PubMed  CAS  Google Scholar 

  • Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I (2003) Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J Neurosci 23:4315–4323

    PubMed  CAS  Google Scholar 

  • Bernard JF, Huang GF, Besson JM (1992) Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 68:551–569

    PubMed  CAS  Google Scholar 

  • Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, Buchel C (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. NeuroImage 23:224–232

    PubMed  CAS  Google Scholar 

  • Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8–15

    PubMed  CAS  Google Scholar 

  • Bingel U, Wanigasekera V, Wiech K, Mhuircheartaigh RN, Lee MC, Ploner M, Tracey I (2011) The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med 3:70ra14

    PubMed  Google Scholar 

  • Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326–1336

    PubMed  CAS  Google Scholar 

  • Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546

    PubMed  Google Scholar 

  • Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14:502–511

    PubMed  CAS  Google Scholar 

  • Clark WC (1969) Sensory-decision theory analysis of the placebo effect on the criterion for pain and thermal sensitivity. J Abnorm Psychol 74:363–371

    PubMed  CAS  Google Scholar 

  • Craggs J, Price D, Perlstein W, Nicholas Verne G, Robinson M (2008) The dynamic mechanisms of placebo induced analgesia: evidence of sustained and transient regional involvement. Pain 139:660–669

    PubMed  PubMed Central  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    PubMed  CAS  Google Scholar 

  • Craig ADB (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:12

    Google Scholar 

  • Craig ADB, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    PubMed  CAS  Google Scholar 

  • Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195

    PubMed  CAS  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    PubMed  CAS  Google Scholar 

  • de Craen AJ, Tijssen JG, de Gans J, Kleijnen J (2000) Placebo effect in the acute treatment of migraine: subcutaneous placebos are better than oral placebos. J Neurol 247:183–188

    PubMed  Google Scholar 

  • De Pascalis V, Chiaradia C, Carotenuto E (2002) The contribution of suggestibility and expectation to placebo analgesia phenomenon in an experimental setting. Pain 96:393–402

    PubMed  Google Scholar 

  • Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duerden EG, Albanese M-C (2011) Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 34:109–149

    Google Scholar 

  • Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29:14223–14235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926

    PubMed  PubMed Central  Google Scholar 

  • Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Buchel C (2009a) Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:533–543

    PubMed  CAS  Google Scholar 

  • Eippert F, Finsterbusch J, Bingel U, Buchel C (2009b) Direct evidence for spinal cord involvement in placebo analgesia. Science 326:404

    PubMed  CAS  Google Scholar 

  • Fields HL (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253

    PubMed  CAS  Google Scholar 

  • Fields HL (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575

    PubMed  CAS  Google Scholar 

  • Friebel U, Eickhoff S, Lotze M (2011) Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. NeuroImage 1–11

    Google Scholar 

  • Geuter S, Buchel C (2013) Facilitation of pain in the human spinal cord by nocebo treatment. J Neurosci 33:13784–13790

    PubMed  CAS  Google Scholar 

  • Geuter S, Eippert F, Attar CH, Büchel C (2012) Cortical and subcortical responses to high and low effective placebo treatments. Neuroimage:1–10

    Google Scholar 

  • Goffaux P, Redmond WJ, Rainville P, Marchand S (2007) Descending analgesia–when the spine echoes what the brain expects. Pain 130:137–143

    PubMed  Google Scholar 

  • Gracely RH, Dubner R, Deeter WR, Wolskee PJ (1985) Clinicians’ expectations influence placebo analgesia. Lancet 1:43

    PubMed  CAS  Google Scholar 

  • Harris RE, Zubieta J-K, Scott DJ, Napadow V, Gracely RH, Clauw DJ (2009) Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs). NeuroImage 47:1077–1085

    PubMed  PubMed Central  Google Scholar 

  • Helmstetter FJ (1992) The amygdala is essential for the expression of conditional hypoalgesia. Behav Neurosci 106:518–528

    PubMed  CAS  Google Scholar 

  • Jensen KB, Petrovic P, Kerr CE, Kirsch I, Raicek J, Cheetham A, Spaeth R, Cook A, Gollub RL, Kong J, Kaptchuk TJ (2013) Sharing pain and relief: neural correlates of physicians during treatment of patients. Mol Psychiatry 19:392–398

    PubMed  Google Scholar 

  • Johnston NE, Atlas LY, Wager TD (2012) Opposing effects of expectancy and somatic focus on pain. PLoS ONE 7:e38854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaptchuk TJ (2002) The placebo effect in alternative medicine: can the performance of a healing ritual have clinical significance? Ann Intern Med 136:817–825

    PubMed  Google Scholar 

  • Kaptchuk TJ, Goldman P, Stone DA, Stason WB (2000) Do medical devices have enhanced placebo effects? J Clin Epidemiol 53:786–792

    PubMed  CAS  Google Scholar 

  • Keltner J, Furst A, Fan C, Redfern R, Inglis B et al (2006) Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci 26:4437–4443

    PubMed  CAS  Google Scholar 

  • Kirsch I (1985) Response expectancy as a determinant of experience and behavior. Am Psychol 40:1189–1202

    Google Scholar 

  • Kirsch I (1997) Response expectancy theory and application: a decennial review. Appl Prev Psychol 6:69–79

    Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    PubMed  CAS  Google Scholar 

  • Koban L, Ruzic L, Wager TD (2013) Brain predictors of individual differences in placebo responding. In: Colloca L, Flaten MA, Meissner K (eds) Placebo and pain (89–101). Elsevier/Academic Press, Burlington, MA

    Google Scholar 

  • Kober H, Wager TD (2010) Meta-analysis of neuroimaging data. WIREs Cogn Sci 1:293–300

    Google Scholar 

  • Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG, Kirsch I, Kaptachuk TJ (2006) Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci 26:381–388

    PubMed  CAS  Google Scholar 

  • Kong J, Kaptachuk T, Polich G, Kirsch I, Angel M, Zyloney C, Rosen B, Gollub R (2009a) An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. NeuroImage 47:1066–1076

    PubMed  PubMed Central  Google Scholar 

  • Kong J, Kaptachuk TJ, Polich G, Kirsch I, Vangel MG, Zyloney C, Rosen BR, Gollub RL (2009b) Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. NeuroImage 45:940–949

    PubMed  PubMed Central  Google Scholar 

  • Kong J, Jensen K, Loiotile R, Cheetham A, Wey H-Y, Tan Y, Rosen B, Smoller JW, Kaptchuk TJ, Gollub RL (2013) Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain 154:459–467

    PubMed  PubMed Central  Google Scholar 

  • Koyama T, McHaffie JG, Laurienti P, Coghill RC (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102:12950–12955

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kross E, Berman MG, Mischel W, Smith EE, Wager TD (2011) Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci USA 108:6270–6275

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kulkarni B, Bentley DE, Elliott R, Youell P, Watson A, Derbyshire SW, Frackowiak RS, Friston KJ, Jones AK (2005) Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci 21:3133–3142

    PubMed  CAS  Google Scholar 

  • LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20:937–945

    PubMed  CAS  Google Scholar 

  • LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235

    PubMed  CAS  Google Scholar 

  • Lee H-F, Hsieh J-C, Lu C-L, Yeh T-C, Tu C-H, Cheng C-M, Niddam DM, Lin H-C, Lee F-Y, Chang F-Y (2012) Enhanced affect/cognition-related brain responses during visceral placebo analgesia in irritable bowel syndrome patients. Pain 153:1301–1310

    PubMed  Google Scholar 

  • Levine JD, Gordon NC (1984) Influence of the method of drug administration on analgesic response. Nature 312:755–756

    PubMed  CAS  Google Scholar 

  • Levine JD, Gordon NC, Fields HL (1978) The mechanism of placebo analgesia. Lancet 2:654–657

    PubMed  CAS  Google Scholar 

  • Liberman R (1964) An experimental study of the placebo response under three different situations of pain. J Psychiatr Res 33:233–246

    Google Scholar 

  • Lieberman MD, Jarcho JM, Berman S, Naliboff BD, Suyenobu B, Mandelkern M, Mayer EA (2004) The neural correlates of placebo effects: a disruption account. NeuroImage 22:447–455

    PubMed  Google Scholar 

  • Liljeholm M, O’Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16:467–475

    PubMed  PubMed Central  Google Scholar 

  • Lu H-C, Hsieh J-C, Lu C-L, Niddam DM, Wu Y-T, Yeh T-C, Cheng C-M, Chang F-Y, Lee S-D (2010) Neuronal correlates in the modulation of placebo analgesia in experimentally-induced esophageal pain: A 3 T-fMRI study. Pain 148:75–83

    PubMed  Google Scholar 

  • Lui F, Colloca L, Duzzi D, Anchisi D, Benedetti F, Porro CA (2010) Neural bases of conditioned placebo analgesia. Pain 151:816–824

    PubMed  Google Scholar 

  • Maihöfner C, Herzner B, Otto Handwerker H (2006) Secondary somatosensory cortex is important for the sensory-discriminative dimension of pain: a functional MRI study. Eur J Neurosci 23:1377–1383

    PubMed  Google Scholar 

  • Matre D, Casey KL, Knardahl S (2006) Placebo-induced changes in spinal cord pain processing. J Neurosci 26:559–563

    PubMed  CAS  Google Scholar 

  • Mazzola L, Isnard J, Peyron R, Mauguiere F (2011) Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain 135:631–640

    PubMed  Google Scholar 

  • Meissner K, Bingel U, Colloca L, Wager TD, Watson A, Flaten MA (2011) The placebo effect: advances from different methodological approaches. J Neurosci 31:16117–16124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    PubMed  CAS  Google Scholar 

  • Moerman DE, Jonas WB (2002) Deconstructing the placebo effect and finding the meaning response. Ann Intern Med 136:471–476

    PubMed  Google Scholar 

  • Montgomery G, Kirsch I (1996) Mechanisms of placebo pain reduction: an empirical investigation. Psychol Sci 7:174–176

    Google Scholar 

  • Montgomery GH, Kirsch I (1997) Classical conditioning and the placebo effect. Pain 72:107–113

    PubMed  CAS  Google Scholar 

  • Murray EA, O’Doherty JP, Schoenbaum G (2007) What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J Neurosci 27:8166–8169

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia– imaging a shared neuronal network. Science 295:1737–1740

    PubMed  CAS  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Andersson J, Fransson P, Ingvar M (2010) A prefrontal non-opioid mechanism in placebo analgesia. Pain 150:59–65

    PubMed  Google Scholar 

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Clin Neurophysiol 30:263–288

    CAS  Google Scholar 

  • Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53

    PubMed  Google Scholar 

  • Price DD, Milling L, Kirsch I, Duff A (1999) An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83:147–156

    PubMed  CAS  Google Scholar 

  • Price DD, Craggs J, Verne G, Perlstein W, Robinson ME (2007) Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127:63–72

    PubMed  Google Scholar 

  • Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12:195–204

    PubMed  CAS  Google Scholar 

  • Rainville P, Duncan GH, Price DD, Carrier B et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    PubMed  CAS  Google Scholar 

  • Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH (1999) Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 82:159–171

    PubMed  CAS  Google Scholar 

  • Rogan MT, Stäubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607

    PubMed  CAS  Google Scholar 

  • Rosen JB, Donley MP (2006) Animal studies of amygdala function in fear and uncertainty: relevance to human research. Biol Psychol 73:49–60

    PubMed  Google Scholar 

  • Roy M, Shohamy D, Wager T (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156

    PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scott DJ, Stohler CS, Egnatuk C, Wang H et al (2007) Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55:325–336

    PubMed  CAS  Google Scholar 

  • Scott DJ, Stohler C, Egnatuk C, Wang H, Koeppe R, Zubieta JK (2008) Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 65:220–231

    PubMed  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seymour B, O’Doherty JP, Dayan P, Koltzenburg M et al (2004) Temporal difference models describe higher-order learning in humans. Nature 429:664–667

    PubMed  CAS  Google Scholar 

  • Seymour B, O’Doherty JP, Koltzenburg M, Wiech K et al (2005) Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat Neurosci 8:1234–1240

    PubMed  CAS  Google Scholar 

  • Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12:154–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Szczepanski SM, Pinsk MA, Douglas MM, Kastner S, Saalmann YB (2013) Functional and structural architecture of the human dorsal frontoparietal attention network. Proc Natl Acad Sci USA 110:15806–15811

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tölle TR, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgänsberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47

    PubMed  Google Scholar 

  • Wager TD, Atlas LY, Lindquist MA, Roy M, Choong-Wan W, Kross E (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368:1388–1397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wager TD, Fields H (2013) Placebo analgesia. In: McMahon S, Koltzenburg M, Tracey I, and Turk DC (eds) Wall and Melzack’s Textbook of pain, pp 362–373. Philadelphia: Elsevier/Saunders

    Google Scholar 

  • Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303:1162–1167

    PubMed  CAS  Google Scholar 

  • Wager T, Lindquist M, Kaplan L (2007a) Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci 2:150–158

    PubMed  PubMed Central  Google Scholar 

  • Wager TD, Scott DJ, Zubieta J-K (2007b) Placebo effects on human μ-opioid activity during pain. Proc Natl Acad Sci USA 104:11056–11061

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wager TD, Lindquist MA, Nichols TE, Kober H, Snellenberg JXV (2009) Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45:S210–S221

    PubMed  PubMed Central  Google Scholar 

  • Wager TD, Atlas LY, Leotti LA, Rilling JK (2011) Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J Neurosci 31:439–452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watson A, El-Deredy W, Iannetti G, Lloyd D, Tracey I, Vogt B, Nadeau V, Jones A (2009) Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain 145:24–30

    PubMed  PubMed Central  Google Scholar 

  • Whalen PJ (2007) The uncertainty of it all. Trends Cogn Sci 11:499–500

    PubMed  Google Scholar 

  • Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411–418

    PubMed  CAS  Google Scholar 

  • Whalen PJ, Kagan J, Cook RG, Davis FC, Kim H, Polis S, McLaren DG, Somerville LH, McLean AA, Maxwell JS, Johnstone T (2004) Human amygdala responsivity to masked fearful eye whites. Science 306:2061

    PubMed  CAS  Google Scholar 

  • Wiech K, C-s L, Brodersen KH, Bingel U, Ploner M, Tracey I (2010) Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci 30:16324–16331

    PubMed  CAS  Google Scholar 

  • Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    PubMed  CAS  Google Scholar 

  • Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8:665–670

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang W, Luo J (2009) The transferable placebo effect from pain to emotion: changes in behavior and EEG activity. Psychophysiology 46:626–634

    PubMed  Google Scholar 

  • Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS (2001) Regional μ opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    PubMed  CAS  Google Scholar 

  • Zubieta J-K, Bueller JA, Jackson L, Scott DJ et al (2005) Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J Neurosci 25:7754–7762

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research program of the NIH’s National Center for Complementary and Alternative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Y. Atlas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atlas, L.Y., Wager, T.D. (2014). A Meta-analysis of Brain Mechanisms of Placebo Analgesia: Consistent Findings and Unanswered Questions. In: Benedetti, F., Enck, P., Frisaldi, E., Schedlowski, M. (eds) Placebo. Handbook of Experimental Pharmacology, vol 225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44519-8_3

Download citation

Publish with us

Policies and ethics