Skip to main content

On Stigmergically Controlling a Population of Heterogeneous Mobile Agents Using Cloning Resource

Part of the Lecture Notes in Computer Science book series (TCCI,volume 8615)

Abstract

Cloning can greatly enhance the performance of networked systems that make use of mobile agents to patrol or service the nodes within. Uncontrolled cloning can however lead to generation of a large number of such agents which may affect the network performance adversely. Several attempts to control a population of homogeneous agents and their clones have been made. This paper describes an on-demand population control mechanism for a heterogeneous set of mobile agents along with an underlying application for their deployment as service providers in a networked robotic system. The mobile agents stigmergically sense and estimate the network conditions from within a node and control their own cloning rates. These agents also use a novel concept called the Cloning Resource which controls their cloning behaviour. The results, obtained from both simulation and emulation presented herein, portray the effectiveness of deploying this mechanism in both static and dynamic networks.

Keywords

  • Mobile agents
  • Cloning
  • Population control
  • Cloning resource
  • Typhon

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-44509-9_3
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-44509-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Chess, D., Harrison, C., Kershenbaum, A.: Mobile agents: Are they a good idea? In: Tschudin, C.F., Vitek, J. (eds.) MOS 1996. LNCS, vol. 1222, pp. 25–45. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  2. Dale, J.: A mobile agent architecture to support distributed resource information management. Master’s thesis, January 1996

    Google Scholar 

  3. Manvi, S.S., Venkataram, P.: Mobile agent based approach for QoS routing. IET Commun. 1(3), 430–439 (2007)

    CrossRef  Google Scholar 

  4. Van Thanh, D.: Using mobile agents in telecommunications. In: Proceedings of 12th International Workshop on Database and Expert Systems Applications, 2001, pp. 685–688. IEEE (2001)

    Google Scholar 

  5. Wei, C., Yi, Z.: A multi-constrained routing algorithm based on mobile agent for MANET networks. In: Proceedings of International Joint Conference on Artificial Intelligence, 2009. JCAI’09, pp. 16–19. IEEE (2009)

    Google Scholar 

  6. Pathak, H., Nipur, Garg, K.: A fault tolerant comparison internet shopping system: best deal by using mobile agent. In: Proceedings of International Conference on Information Management and Engineering, 2009. ICIME ’09, pp. 541–545 (2009)

    Google Scholar 

  7. Yamaya, T., Shintani, T., Ozono, T., Hiraoka, Y., Hattori, H., Ito, T., Fukuta, N., Umemura, K.: MiNet: building ad-hoc peer-to-peer networks for information sharing based on mobile agents. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS (LNAI), vol. 3336, pp. 59–70. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Cragg, L., Hu, H.: Application of mobile agents to robust teleoperation of internet robots in nuclear decommissioning. In: Proceedings of IEEE International Conference on Industrial Technology, 2003, vol. 2, pp. 1214–1219. IEEE (2003)

    Google Scholar 

  9. Cragg, L., Hu, H.: A multi-agent system for distributed control of networked mobile robots. Meas. Control 38(10), 314–319 (2005)

    CrossRef  Google Scholar 

  10. Cragg, L., Hu, H.: Mobile agent approach to networked robots. Int. J. Adv. Manuf. Technol. 30(9–10), 979–987 (2006)

    CrossRef  Google Scholar 

  11. Chu, H.N., Glad, A., Simonin, O., Sempe, F., Drogoul, A., Charpillet, F.: Swarm approaches for the patrolling problem, information propagation vs. pheromone evaporation. In: Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence, 2007. ICTAI 2007, vol. 1, pp. 442–449. IEEE (2007)

    Google Scholar 

  12. Sempé, F., Drogoul, A.: Adaptive patrol for a group of robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. IROS 2003, vol. 3, pp. 2865–2869. IEEE (2003)

    Google Scholar 

  13. Godfrey, W.W., Nair, S.B.: An immune system based multi-robot mobile agent network. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 424–433. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  14. Godfrey, W.W., Nair, S.B.: A pheromone based mobile agent migration strategy for servicing networked robots. In: Suzuki, J., Nakano, T. (eds.) BIONETICS 2010. LNICST, vol. 87, pp. 533–541. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. De Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications, vol. 11. CRC Press, New York (2006)

    Google Scholar 

  16. Minar, N., Kramer, K.H., Maes, P.: Cooperating mobile agents for dynamic network routing. In: Hayzelden, A.L.G., Bigham, J. (eds.) Software Agents for Future Communication Systems, pp. 287–304. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  17. Godfrey, W.W., Nair, S.B.: Mobile agent cloning for servicing networked robots. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 336–339. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  18. Bonabeau, E.: Editor’s introduction: stigmergy. Artif. Life 5(2), 95–96 (1999)

    CrossRef  Google Scholar 

  19. Godfrey, W.W., Nair, S.B.: A mobile agent cloning controller for servicing networked robots. In: Proceedings of 2011 International Conference on Future Information Technology. IPCSIT 2011, pp. 81–85. IACSIT Press (2011)

    Google Scholar 

  20. Glitho, R., Olougouna, E., Pierre, S.: Mobile agents and their use for information retrieval: a brief overview and an elaborate case study. IEEE Network 16(1), 34–41 (2002)

    CrossRef  Google Scholar 

  21. Jin, Y., Qu, W., Zhang, Y., Wang, Y.: A mobile agent-based routing model for grid computing. J. Supercomput. 63(2), 431–442 (2013)

    CrossRef  Google Scholar 

  22. Hamza, S., Okba, K., Aïcha-Nabila, B., Youssef, A.: A Cloud computing approach based on mobile agents for Web services discovery. In: 2012 Second International Conference on Innovative Computing Technology (INTECH), pp. 297–304 (2012)

    Google Scholar 

  23. Stahl, F., Gaber, M., Bramer, M., Yu, P.: Pocket data mining: towards collaborative data mining in mobile computing environments. In: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 2, pp. 323–330 (2010)

    Google Scholar 

  24. Suzuki, T., Izumi, T., Ooshita, F., Masuzawa, T.: Biologically inspired self-adaptation of mobile agent population. In: Proceedings of Sixteenth International Workshop on Database and Expert Systems Applications, 2005, pp. 170–174. IEEE (2005)

    Google Scholar 

  25. Suzuki, T., Izumi, T., Ooshita, F., Masuzawa, T.: Self-adaptive mobile agent population control in dynamic networks based on the single species population model. IEICE Trans. Inf. Syst. 90(1), 314–324 (2007)

    CrossRef  Google Scholar 

  26. Ma, J., Voelker, G.M., Savage, S.: Self-stopping worms. In: Proceedings of the 2005 ACM Workshop on Rapid Malcode, pp. 12–21. ACM (2005)

    Google Scholar 

  27. Golebiewski, Z., Kutylowski, M., Luczak, T., Zagórski, F.: Self-stabilizing population of mobile agents. In: Proceedings of IEEE International Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  28. Flores-Badillo, M., Padilla-Duarte, A., López-Mellado, E.: A population control protocol for mobile agent based workflow automation. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009, pp. 4059–4064. IEEE (2009)

    Google Scholar 

  29. Amin, K.A., Mikler, A.R., Prasanna, V.I.: Dynamic agent population in agent-based distance vector routing. Neural Parallel Sci. Comput. 11(1 & 2), 127–142 (2003)

    MATH  Google Scholar 

  30. Bakhouya, M., Gaber, J.: Adaptive approach for the regulation of a mobile agent population in a distributed network. In: Proceedings of the Fifth International Symposium on Parallel and Distributed Computing, 2006. ISPDC’06, pp. 360–366. IEEE (2006)

    Google Scholar 

  31. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D: Nonlin Phen. 22(1), 187–204 (1986)

    CrossRef  MathSciNet  Google Scholar 

  32. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 1. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  33. Nair, S.B., Godfrey, W.W., Kim, D.H.: On realizing a multi-agent emotion engine. Int. J. Synth. Emot. (IJSE) 2(2), 1–27 (2011)

    CrossRef  Google Scholar 

  34. Godfrey, W.W., Nair, S.B., Kim, D.H.: Towards a dynamic emotional model. In: Proceedings of IEEE International Symposium on Industrial Electronics, 2009. ISIE 2009, pp. 1932–1936. IEEE (2009)

    Google Scholar 

  35. Mishra, R., Srivastava, A., Bhaumik, K., Chaudhary, S.: ACTH and regulation of adrenocortical secretion: a mathematical model. Indian J. Pure Appl. Math. 13(12), 1503–1512 (1982)

    MATH  Google Scholar 

  36. Matani, J., Nair, S.B.: Typhon - a mobile agents framework for real world emulation in prolog. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS (LNAI), vol. 7080, pp. 261–273. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  37. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology, Government of India, for the funding provided under the FIST scheme to set up the Robotics Lab. (www.iitg.ernet.in/cse/robotics) at the Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, where the entire reported work was carried out.

The second author would like to acknowledge Tata Consultancy Services for their support under TCS-RSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Shekhar Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godfrey, W.W., Jha, S.S., Nair, S.B. (2014). On Stigmergically Controlling a Population of Heterogeneous Mobile Agents Using Cloning Resource. In: Nguyen, N. (eds) Transactions on Computational Collective Intelligence XIV. Lecture Notes in Computer Science(), vol 8615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44509-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44509-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44508-2

  • Online ISBN: 978-3-662-44509-9

  • eBook Packages: Computer ScienceComputer Science (R0)