Skip to main content

Parallel Rank Coherence in Networks for Inferring Disease Phenotype and Gene Set Associations

  • Conference paper
Book cover Advanced Computer Architecture

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 451))

Abstract

The RCNet (Rank Coherence in Networks) algorithm has been used to find out the associations between the gene sets and disease phenotypes. However, it suffers from high computational cost when the size of dataset is very large. In this paper, we design three mechanisms to solve the RCNet algorithm on heterogeneous CPU-GPU system based on CUDA and OpenMP programming model. The pipeline mechanism is much suitable for the collaborative computing on CPU and dual-GPUs, which can achieve more than 33 times performance gains. The work plays an important role in reconstructing the disease phoneme-genome association efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bustamam, A., Burrage, K., Hamilton, N.A.: A GPU Implementation of Fast Parallel Markov Clustering in Bioinformatics Using EIIPACK-R Sparse Data Format. In: Advances in Computing, Control and Telecommunication Technologies (ACT), Jakarta, pp. 173–175 (2010)

    Google Scholar 

  2. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters. In: Application Specific Processors (SASP), Anaheim, CA, pp. 71–76 (2011)

    Google Scholar 

  3. Membarth, R., Hannig, F., Teich, J., Korner, M., Eckert, W.: Generating Device-specific GPU code for Local Operators in Medical Imaging. In: Parallel & Distributed Processing Symposium (IPDPS), Shanghai, pp. 569–581 (2012)

    Google Scholar 

  4. McKusick, V.: Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007)

    Article  Google Scholar 

  5. Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78(6), 1011–1025 (2006)

    Article  Google Scholar 

  6. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  7. Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10(9), R91 (2009)

    Google Scholar 

  8. Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4 (2008)

    Google Scholar 

  9. Hwang, T., Kuang, R.: A heterogeneous label propagation algorithm for disease gene discovery. In: Proc. of SIAM International Conference on Data Mining, pp. 583–594 (2010)

    Google Scholar 

  10. Huang, D., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009)

    Article  Google Scholar 

  11. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  12. Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D., Jacq, B.: GOToolbox: functional analysis of gene datasets based on gene ontology. Genome Biol. 5(12), R101 (2004)

    Google Scholar 

  13. Hwang, T., Zhang, W., Xie, M., Liu, J., Kuang, R.: Inferring disease and gene set associations with rank coherence in networks. Bioinformatics 27(19), 2692–2699 (2011), doi: 10.1093/bioinformatics/btr463

    Google Scholar 

  14. Encarnaijao, G., Sebastiao, N., Roma, N.: Advantages and GPU implementation of high-performance indexed DNA search based on suffix arrays. In: High Performance Computing and Simulation, Istanbul, pp. 49–55 (2011)

    Google Scholar 

  15. Xiao, S., Lin, H., Feng, W.-C.: Accelerating Protein Sequence Search a Heterogeneous Computing System. In: Parallel & Distributed Processing Symposium, Anchorage, AK, pp. 1212–1222 (2011)

    Google Scholar 

  16. Stuart, J.A., Owens, J.D.: Multi-GPU MapReduce on GPU Clusters. In: Parallel & Distributed Processing Symposium, Anchorage, AK, pp. 1068–1079 (2011)

    Google Scholar 

  17. Owens, J.D., Luebke, D., Govimdaraju, N., Harris, M., Krüger, J., Lefohn, A., et al.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  18. NVIDIA, http://www.nvidia.com/object/cuda_home_new.html

  19. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advanced Neural Information Processing Systems, Cambridge, MA, vol. 16, pp. 321–328 (2004)

    Google Scholar 

  20. van Driel, M., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14, 535–542 (2006)

    Article  Google Scholar 

  21. Chuang, H.-Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Molecular Systems Biology 3 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, T., Wang, D., Zhang, S., Yang, Y. (2014). Parallel Rank Coherence in Networks for Inferring Disease Phenotype and Gene Set Associations. In: Wu, J., Chen, H., Wang, X. (eds) Advanced Computer Architecture. Communications in Computer and Information Science, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44491-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44491-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44490-0

  • Online ISBN: 978-3-662-44491-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics