Skip to main content

Texture Classification of Proteins Using Support Vector Machines and Bio-inspired Metaheuristics

  • Conference paper
  • First Online:
  • 794 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 452))

Abstract

In this paper, a novel classification method of two-dimensional polyacrylamide gel electrophoresis images is presented. Such a method uses textural features obtained by means of a feature selection process for whose implementation we compare Genetic Algorithms and Particle Swarm Optimization. Then, the selected features, among which the most decisive and representative ones appear to be those related to the second order co-occurrence matrix, are used as inputs for a Support Vector Machine. The accuracy of the proposed method is around 94 %, a statistically better performance than the classification based on the entire feature set. This classification step can be very useful for discarding over-segmented areas after a protein segmentation or identification process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rabilloud, T., Chevallet, M., Luche, S., Lelong, C.: Two-dimensional gel electrophoresis in proteomics: past, present and future. J. Proteomics 73, 2064–2077 (2010)

    Article  Google Scholar 

  2. Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35, 735–747 (2002)

    Article  MATH  Google Scholar 

  3. Marten Lab Proteomics Page. http://www.umbc.edu/proteome/image_analysis.html

  4. Center for Cancer Research Nanobiology Program (CCRNP). http://www.ccrnp.ncifcrf.gov/users/lemkin

  5. Tsakanikas, P., Manolakos, E.S.: Improving 2-DE gel image denoising using contourlets. Proteomics 9, 3877–3888 (2009)

    Article  Google Scholar 

  6. Millioni, R., Sbrignadello, S., Tura, A., Iori, E., Murphy, E., Tessari, P.: The inter- and intra-operator variability in manual spot segmentation and its effect on spot quantitation in two-dimensional electrophoresis analysis. Electrophoresis 31, 1739–1742 (2010)

    Article  Google Scholar 

  7. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Proceedings, vol. 1944, pp. 1942–1948 (1995)

    Google Scholar 

  9. Vapnik, V.N.: Estimation of dependences based on empirical data [in Russian]. English translation Springer Verlang, 1982, Nauka (1979)

    Google Scholar 

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. smc 3, 610–621 (1973)

    Article  Google Scholar 

  11. Materka, A., Strzelecki, M.: Texture analysis methods-A review. Technical University of Lodz, Institute of Electronics. COST B11 report (1998)

    Google Scholar 

  12. Tuceryan, M., Jain, A.: Texture analysis. Handbook of pattern recognition and computer vision, vol. 2. World Scientific Publishing Company, Incorporated (1999)

    Google Scholar 

  13. Levina, E.: Statistical Issues in Texture Analysis. University of California, Berkeley (2002)

    Google Scholar 

  14. Peitgen, H.O., Saupe, D., Barnsley, M.F.: The Science of Fractal Images. Springer-Verlag, New York (1988)

    MATH  Google Scholar 

  15. Pietikainen, K.: Texture Analysis in Machine Vision. World Scientific Publishing Company (Incorporated), River Edge (2000)

    Google Scholar 

  16. Mirmedhdi, M., Xie, X., Suri, J.S.: Handbook of Texture Analysis. Imperial College Press, London (2008)

    Book  Google Scholar 

  17. Gibson, J.J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  18. Laws, K.I.: Textured Image Segmentation. University of Southern California, Los Angles (1980)

    Google Scholar 

  19. Tomita, F., Tsuji, S.: Computer Analysis of Visual Textures. Kluwer Academic Publishers, Boston (1990)

    Book  MATH  Google Scholar 

  20. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Upper Saddle River (1989)

    MATH  Google Scholar 

  21. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. App. 2008, 1–10 (2008)

    Google Scholar 

  22. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: Backgr. Dev. 6, 467–484 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  24. Moulin, L.S., Da Silva, A.P.A., El-Sharkawi, M.A., Marks Ii, R.J.: Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst. 19, 818–825 (2004)

    Article  Google Scholar 

  25. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10, 1055–1064 (1999)

    Article  Google Scholar 

  26. Rye, M.B., Alsberg, B.K.: A multivariate spot filtering model for two-dimensional gel electrophoresis. Electrophoresis 29, 1369–1381 (2008)

    Article  Google Scholar 

  27. Hunt, S.M.N., Thomas, M.R., Sebastian, L.T., Pedersen, S.K., Harcourt, R.L., Sloane, A.J., Wilkins, M.R.: Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J. Proteome Res. 4, 809–819 (2005)

    Article  Google Scholar 

  28. Szczypinski, P.M., Strzelecki, M., Materka, A.: MaZda - A software for texture analysis, pp. 245–249

    Google Scholar 

  29. Szymanski, J.J., Jamison, J.T., DeGracia, D.J.: Texture analysis of poly-adenylated mRNA staining following global brain ischemia and reperfusion. Comput. Methods Programs Biomed. 105, 81–94 (2012)

    Article  Google Scholar 

  30. Harrison, L., Dastidar, P., Eskola, H., Järvenpää, R., Pertovaara, H., Luukkaala, T., Kellokumpu-Lehtinen, P.L., Soimakallio, S.: Texture analysis on MRI images of non-Hodgkin lymphoma. Comput. Biol. Med. 38, 519–524 (2008)

    Article  Google Scholar 

  31. Mayerhoefer, M.E., Breitenseher, M.J., Kramer, J., Aigner, N., Hofmann, S., Materka, A.: Texture analysis for tissue discrimination on T1-weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers. J. Magn. Reson. Imaging 22, 674–680 (2005)

    Article  Google Scholar 

  32. Bonilha, L., Kobayashi, E., Castellano, G., Coelho, G., Tinois, E., Cendes, F., Li, L.M.: Texture analysis of hippocampal sclerosis. Epilepsia 44, 1546–1550 (2003)

    Article  Google Scholar 

  33. Létal, J., Jirák, D., Suderlová, L., Hájek, M.: MRI ‘texture’ analysis of MR images of apples during ripening and storage. LWT - Food Sci. Technol. 36, 719–727 (2003)

    Article  Google Scholar 

  34. Szczypiski, P.M., Strzelecki, M., Materka, A., Klepaczko, A.: MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 94, 66–76 (2009)

    Article  Google Scholar 

  35. Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recogn. Lett. 10, 335–347 (1989)

    Article  MATH  Google Scholar 

  36. Kudo, M., Sklansky, J.: A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers. Kybernetika 34, 429–434 (1998)

    MATH  Google Scholar 

  37. Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recogn. 36, 2883–2893 (2003)

    Article  MATH  Google Scholar 

  38. Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1542–1550 (2002)

    Article  Google Scholar 

  39. Buciu, I., Kotropoulos, C., Pitas, I.: Demonstrating the stability of support vector machines for classification. Sig. Process. 86, 2364–2380 (2006)

    Article  MATH  Google Scholar 

  40. Jain, A.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19, 153–158 (1997)

    Article  Google Scholar 

  41. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. pp. 2126–2136. (Year)

    Google Scholar 

  42. Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31, 231–240 (2006)

    Article  Google Scholar 

  43. Manimala, K., Selvi, K., Ahila, R.: Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining. Appl. Soft Comput. J. 11, 5485–5497 (2011)

    Article  Google Scholar 

  44. Müller, Meinard, Demuth, Bastian, Rosenhahn, Bodo: An evolutionary approach for learning motion class patterns. In: Rigoll, Gerhard (ed.) DAGM 2008. LNCS, vol. 5096, pp. 365–374. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  45. Tamboli, A.S., Shah, M.A.: A Generic Structure of Object Classification Using Genetic Programming. In: 2011 International Conference on Communication Systems and Network Technologies (CSNT), pp. 723–728 (2011)

    Google Scholar 

  46. Ferri, C., Hernádez-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recogn. Lett. 30, 27–38 (2009)

    Article  Google Scholar 

  47. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005)

    Article  Google Scholar 

  48. Chen, S.: Another Particle Swarm Optimization Toolbox. Ontario (2003)

    Google Scholar 

  49. Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85, 1579–1588 (2007)

    Article  Google Scholar 

  50. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  51. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  52. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Taylor and Francis, Boca Raton (2011)

    MATH  Google Scholar 

  53. García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13, 959–977 (2009)

    Article  Google Scholar 

  54. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 160, 268–282 (1937)

    Article  Google Scholar 

Download references

Acknowledgements

This work is by “Development of new image analysis techniques in 2D Gel for biomedical research” (Ref. 10SIN105004PR), CN2102/217, CN2011/034 and CN2012/130 by Xunta de Galicia. Jose A. Seoane acknowledges Medical Research Council Project Grant G1000427. Pablo Mesejo and Youssef S.G. Nashed are funded by the European Commission (MIBISOC Marie Curie Initial Training Network, FP7 PEOPLE-ITN-2008, GA n. 238819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernandez-Lozano .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3a. Results with different SVM Gaussian kernels.
Table 3b. Results with different SVM polynomial kernels.
Table 4. Study of texture parameters between best SVM kernels in accuracy.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandez-Lozano, C., Seoane, J.A., Mesejo, P., Nashed, Y.S.G., Cagnoni, S., Dorado, J. (2014). Texture Classification of Proteins Using Support Vector Machines and Bio-inspired Metaheuristics. In: Fernández-Chimeno, M., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2013. Communications in Computer and Information Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44485-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44485-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44484-9

  • Online ISBN: 978-3-662-44485-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics