Skip to main content

Identification of Athletes During Walking and Jogging Based on Gait and Electrocardiographic Patterns

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 452))

Abstract

We propose a biometric method for identifying athletes based on information extracted from the gait style and the electrocardiographic (ECG) waveform. The required signals are recorded within a non-clinical acquisition setup using a wireless body sensor attached to a chest strap with integrated textile electrodes. Our method combines both sources of information to allow identification despite severe intra-subjects variations in the gait patterns (walking and jogging) and motion related artefacts in the ECG patterns. For identification we use features extracted in time and frequency domain and a standard classifier. Within a treadmill experiment with 22 subjects we obtained an accuracy of 98.1 % for velocities from 3 to 9 km/h. On a second data set consisting of 9 subjects and two sessions of recording, our method achieved 93.8 % despite variations in the patterns due to reapplying the body sensor and an increased velocity (up to 11 km/h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LIBSVM: library for support vector machines.

References

  1. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  2. Ailisto, H.J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., Makela, S.M.: Identifying people from gait pattern with accelerometers. In: Society of Photo-Optical Instrumentation Engineers, pp. 7–14 (2005)

    Google Scholar 

  3. Bianchi, L., Angelini, D., Lacquaniti, F.: Individual characteristics of human walking mechanics. Pflügers Arch. Eur. J. Physiol. 436, 343–356 (1998)

    Article  Google Scholar 

  4. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York Inc., Secaucus (2006)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)

    Article  Google Scholar 

  8. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  9. Christ, P., Mielebacher, J., Haag, M., Rückert, U.: Detection of body movement and measurement of physiological stress with a mobile chest module in obesity prevention. In: Proceedings of the 10th Australasian Conference on Mathematics and Computers in Sport, pp. 67–74, July 2010

    Google Scholar 

  10. Christ, P., Werner, F., Rückert, U., Mielebacher, J.: An approach for determining linear velocities of athletes from acceleration measurements using a neural network. In: Proceedings of the 6th IASTED International Conference on Biomechanics, pp. 105–112. ACTA Press, November 2011

    Google Scholar 

  11. Conover, M.B.: Understanding electrocardiography. Mosby (2002)

    Google Scholar 

  12. Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. J. Comput. 1(7), 51–59 (2006)

    Article  Google Scholar 

  13. Green, L.S., Lux, R.L., Haws, C.W., Williams, R.R., Hunt, S.C., Burgess, M.J.: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 71(2), 244–253 (1985)

    Article  Google Scholar 

  14. Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kaufmann series in data management systems. Elsevier (2006)

    Google Scholar 

  15. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  16. Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S.-M., Ailisto, H.A.: Identifying users of portable devices from gait pattern with accelerometers. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. ii/973–ii/976, March 2005

    Google Scholar 

  17. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  18. Nixon, M.S., Tan, T., Chellappa, R.: Human identification based on gait, vol. 4. Springer-Verlag New York Inc., Secaucus (2006)

    Book  Google Scholar 

  19. Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2nd IEEE Conference on Industrial Electronics and Applications, pp. 2654–2659 (2007)

    Google Scholar 

  20. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  21. Shen, T. W., Tompkins, W.J., Hu, Y.H.: One-lead ECG for identity verification. In: Proceedings of the 2nd IEEE International Joint Conference on Engineering in Medicine and Biology Society, vol. 1, pp. 62–63. IEEE (2002)

    Google Scholar 

  22. Simon, B.P., Eswaran, C.: An ECG classifier designed using modified decision based neural networks. Comput. Biomed. Res. 30(4), 257–272 (1997)

    Article  Google Scholar 

  23. Vidaurre, C., Sander, T.H., Schlögl, A.: BioSig: the free and open source software library for biomedical signal processing. Comput. Intell. Neurosci. 2011, 12 (2011)

    Google Scholar 

  24. Weyand, P.G., Sternlight, D.B., Bellizzi, M.J., Wright, S.: Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89(5), 1991–1999 (2000)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the DFG CoE 277: Cognitive Interaction Technology (CITEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Christ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christ, P., Rückert, U. (2014). Identification of Athletes During Walking and Jogging Based on Gait and Electrocardiographic Patterns. In: Fernández-Chimeno, M., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2013. Communications in Computer and Information Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44485-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44485-6_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44484-9

  • Online ISBN: 978-3-662-44485-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics