Advertisement

Identification of Athletes During Walking and Jogging Based on Gait and Electrocardiographic Patterns

  • Peter ChristEmail author
  • Ulrich Rückert
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 452)

Abstract

We propose a biometric method for identifying athletes based on information extracted from the gait style and the electrocardiographic (ECG) waveform. The required signals are recorded within a non-clinical acquisition setup using a wireless body sensor attached to a chest strap with integrated textile electrodes. Our method combines both sources of information to allow identification despite severe intra-subjects variations in the gait patterns (walking and jogging) and motion related artefacts in the ECG patterns. For identification we use features extracted in time and frequency domain and a standard classifier. Within a treadmill experiment with 22 subjects we obtained an accuracy of 98.1 % for velocities from 3 to 9 km/h. On a second data set consisting of 9 subjects and two sessions of recording, our method achieved 93.8 % despite variations in the patterns due to reapplying the body sensor and an increased velocity (up to 11 km/h).

Keywords

Human identification Accelerometer Electrocardiograph (ECG) Wireless body sensor (WBS) Pattern recognition 

Notes

Acknowledgements

This research was supported by the DFG CoE 277: Cognitive Interaction Technology (CITEC).

References

  1. 1.
    Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. Trans. Biomed. Eng. 46(2), 192–202 (1999)CrossRefGoogle Scholar
  2. 2.
    Ailisto, H.J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., Makela, S.M.: Identifying people from gait pattern with accelerometers. In: Society of Photo-Optical Instrumentation Engineers, pp. 7–14 (2005)Google Scholar
  3. 3.
    Bianchi, L., Angelini, D., Lacquaniti, F.: Individual characteristics of human walking mechanics. Pflügers Arch. Eur. J. Physiol. 436, 343–356 (1998)CrossRefGoogle Scholar
  4. 4.
    Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York Inc., Secaucus (2006)Google Scholar
  6. 6.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)CrossRefGoogle Scholar
  8. 8.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  9. 9.
    Christ, P., Mielebacher, J., Haag, M., Rückert, U.: Detection of body movement and measurement of physiological stress with a mobile chest module in obesity prevention. In: Proceedings of the 10th Australasian Conference on Mathematics and Computers in Sport, pp. 67–74, July 2010Google Scholar
  10. 10.
    Christ, P., Werner, F., Rückert, U., Mielebacher, J.: An approach for determining linear velocities of athletes from acceleration measurements using a neural network. In: Proceedings of the 6th IASTED International Conference on Biomechanics, pp. 105–112. ACTA Press, November 2011Google Scholar
  11. 11.
    Conover, M.B.: Understanding electrocardiography. Mosby (2002)Google Scholar
  12. 12.
    Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. J. Comput. 1(7), 51–59 (2006)CrossRefGoogle Scholar
  13. 13.
    Green, L.S., Lux, R.L., Haws, C.W., Williams, R.R., Hunt, S.C., Burgess, M.J.: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 71(2), 244–253 (1985)CrossRefGoogle Scholar
  14. 14.
    Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kaufmann series in data management systems. Elsevier (2006)Google Scholar
  15. 15.
    Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)CrossRefGoogle Scholar
  16. 16.
    Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S.-M., Ailisto, H.A.: Identifying users of portable devices from gait pattern with accelerometers. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. ii/973–ii/976, March 2005Google Scholar
  17. 17.
    Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)CrossRefGoogle Scholar
  18. 18.
    Nixon, M.S., Tan, T., Chellappa, R.: Human identification based on gait, vol. 4. Springer-Verlag New York Inc., Secaucus (2006)CrossRefGoogle Scholar
  19. 19.
    Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2nd IEEE Conference on Industrial Electronics and Applications, pp. 2654–2659 (2007)Google Scholar
  20. 20.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)CrossRefGoogle Scholar
  21. 21.
    Shen, T. W., Tompkins, W.J., Hu, Y.H.: One-lead ECG for identity verification. In: Proceedings of the 2nd IEEE International Joint Conference on Engineering in Medicine and Biology Society, vol. 1, pp. 62–63. IEEE (2002)Google Scholar
  22. 22.
    Simon, B.P., Eswaran, C.: An ECG classifier designed using modified decision based neural networks. Comput. Biomed. Res. 30(4), 257–272 (1997)CrossRefGoogle Scholar
  23. 23.
    Vidaurre, C., Sander, T.H., Schlögl, A.: BioSig: the free and open source software library for biomedical signal processing. Comput. Intell. Neurosci. 2011, 12 (2011)Google Scholar
  24. 24.
    Weyand, P.G., Sternlight, D.B., Bellizzi, M.J., Wright, S.: Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89(5), 1991–1999 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Cognitronics and Sensor Systems Group, CITECBielefeld UniversityBielefeldGermany

Personalised recommendations